
 

 

 
 
 
 
 

MALLA REDDY COLLEGE OF 
ENGINEERING & TECHNOLOGY 

 

(Autonomous Institution – UGC, Govt. of India) 

Sponsored by CMR Educational Society 
 

(Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ͚A͛ Grade - ISO 9001:2015 
Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India. 

 
 
 
 

DEPARTMENT OF MECHANICAL ENGINEERING 

 

 

HEAT TRANSFER 
 

DIGITAL NOTES 

 

 

for 

 

B.TECH - III YEAR – II SEMESTER 

 

(2017-18)  



 

 

 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 
 

III Year B. Tech, ME-II Sem 

 

 (R15A0323) HEAT TRANSFER  
*Note:  Heat and Mass Transfer data books are permitted 

Objectives:  

 The objective of this subject is to provide knowledge about Heat transfer through 

conduction, convection and radiation. 

 Student able to learn different modes of Heat Transfer.  

 Student able to learn about the dimensional analysis .  

UNIT-I 

Introduction: Basic modes of heat transfer- Rate equations- Generalized heat conduction equation 

in Cartesian, Cylindrical and Spherical coordinate systems. Steady state heat conduction solution 

for plain and composite slabs, cylinders and spheres- Critical thickness of insulation- Heat 

conduction through fins of uniform and variable cross section- Fin effectiveness and efficiency.  

Unsteady state Heat Transfer conduction- Transient heat conduction- Lumped system analysis, 

and use of Heisler charts.  

UNIT-II 

Convection: Continuity, momentum and energy equations- Dimensional analysis- Boundary layer 

theory concepts- Free, and Forced convection- Approximate solution of the boundary layer 

equations- Laminar and turbulent heat transfer correlation- Momentum equation and velocity 

profiles in turbulent boundary layers- Application of dimensional analysis to free and forced 

convection problems- Empirical correlation. 

UNIT-III  

Radiation: Black body radiation- radiation field, Kirchhoff’s laws- shape factor- Stefan Boltzman 

equation- Heat radiation through absorbing media- Radiant heat exchange, parallel and 

perpendicular surfaces- Radiation shields.  

UNIT-IV 

Heat Exchangers: Types of heat exchangers- Parallel flow- Counter flow- Cross flow heat 

exchangers- Overall heat transfer coefficient- LMTD and NTU methods- Fouling in heat exchangers- 

Heat exchangers with phase change. 

Boiling and Condensation: Different regimes of boiling- Nucleate, Transition and Film boiling. 

Condensation: Laminar film condensation- Nusselt's theory- Condensation on vertical flat plate and 

horizontal tubes- Drop wise condensation.  

UNIT-V  

Mass Transfer: Conservation laws and constitutive equations- Isothermal equimass, Equimolal 

diffusion- Fick's law of diffusion- diffusion of gases, Liquids- Mass transfer coefficient.  

TEXT BOOKS:  

1.  Heat Transfer, by J.P.Holman, Int.Student edition, McGraw Hill Book Company.  

2.  Fundamentals of Heat and Mass Transfer- Sachdeva.  

3.  Heat transfer by Arora and Domakundwar, Dhanpat Rai & sons, New Delhi..  

REFERENCE BOOKS:  

1.  Heat Transfer   by   Sukhatme. 

2. Heat and Mass Transfer  by R.K.Rajput, Laxmi Publications, New Delhi.  

3.  Heat transfer by Yunus A Cengel. 

OUTCOMES:  

 Knowledge and understanding how heat and energy is transferred between the elements of 

a system for different configurations. 

 Solve problems involving one or more modes of heat transfer. 

 Student gets the exposure of different modes of Heat Transfer.  
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UNIT-I 

Modes of Heat Transfer 

Heat Transfer by Conduction 
 
Fourier's Law of Heat Conduction 

 

Q =- Ka  
dx

dt   
 
 

 

The temperature gradient 
dt 

is always negative along positive x direction and,  

 
 

 
 

 
 

 dx  
 

therefore, the value as Q becomes + ve. 
 

Essential Features of Fourier’s law:  
1. It is applicable to all matter (may be solid, liquid or gas). 

2. It is a vector expression indicating that heat flow rate is in the direction of 

decreasing temperature and is normal to an isotherm. 

3. It is based on experimental evidence and cannot be derived from first principle. 
 

Thermal Conductivity of Materials 
 

Sl. NO. Materials Thermal conductivity, (k) 
   

1 Silver 10 W/mk 
   

2 Copper 85 W/mk 
   

3 Aluminium 25 W/mk 
   

4 Steel 40 W/mk 
   

5 Saw dust 0.07 W/mk 

   

6 Glass wool 0.03 W/mk 

7 Freon 0.0083 W/mk 
   

 



 

 

 

 

Solid: 

A. Pure metals, (k) = 10 to 400 W/mk 

B. Alloys, (k) = 10 to 120 W/mk 

C. Insulator, (k) = 0.023 to 2.9 W/mk 

Liquid: k = 0.2 to 0.5 W/mk  

Gas: k = 0.006 to 0.5 W/mk  

 

 

 

Thermal conductivity and temperature: 
 

k = k 0 (1+ βt ) 
 
 

 

  
Al ,U 

 
 

( i ) Metals, k Ļ if t Ĺ except.  
 

( ii ) Liquid k Ļ if t Ĺ except. H O  
 

  2  
 

    
 

( iii )Gas  k Ĺ if t Ĺ   
 

( iv ) Non -metal and   
 

 

insulating material k Ĺ if t 
 

 
 

 
 
 

 

i.e. β ,−ve 
 
 

 

i.e. β ,+ ve 

 

various parameters on the thermal conductivity of solids. 

 

 The following are the effects of various parameters on the thermal 

conductivity of solids. 

1. Chemical composition: Pure metals have very high thermal conductivity. 

Impurities or alloying elements reduce the thermal conductivity considerably 

[Thermal conductivity of pure copper is 385 W/mºC, and that for pure nickel is 

93 W/mºC. But monel metal (an alloy of 30% Ni and 70% Cu) has k of 24 

W/mºC. Again for copper containing traces of Arsenic the value of k is reduced 

to 142 W/mºC]. 
 

2. Mechanical forming: Forging, drawing and bending or heat treatment of 

metals causes considerable variation in thermal conductivity. For example, 

the thermal conductivity of hardened steel is lower than that of annealed 

state. 
 

3. Temperature rise: The value of k for most metals decreases with 

temperature rise since at elevated temperatures the thermal vibrations of the 

lattice become higher that retard the motion of free electrons. 
 

4. Non-metallic solids: Non-metallic solids have k much lower than that for 

metals. For many of the building materials (concrete, stone, brick, glass 

 



 

 

  
 

 

 

wool, cork etc.) the thermal conductivity may vary from sample to sample 

due Fire brick to variations in structure, composition, density and porosity. 
 

5. Presence of air: The thermal conductivity is reduced due to the presence 

of air filled pores or cavities. 

6. Dampness: Thermal conductivity of a damp material is considerably 

higher than that of dry material. 
 

7. Density: Thermal conductivity of insulating powder, asbestos etc. increases 

with density Growth. Thermal conductivity of snow is also proportional to its 

density. 

 

 

Thermal Conductivity of Liquids 
 

 
k = 3ı 

Vs    
 

 Ȝ2
 

  
 

    
 

    R 
 

 

Where  ı =  Boltzmann constant per molecule  
 

 
 

    
A

 v 
 

(Don’t confused with Stefen Boltzmann Constant)  

Vs  = Sonic velocity of molecule  
Ȝ = Distance between two adjacent molecule. 

R = Universal gas constant  
Av  =  Avogadro’s number 

 

Thermal conductivity of gas 
 

    k = 1 n v fıȜ  

     
 

    6  s 
 

        

Where  n = Number of molecule/unit volume 
 

  

s = Arithmetic mean velocity 

 

 v 
 

f =  Number of DOF  
Ȝ =  Molecular mean free path 

 

For liquid thermal conductivity lies in the range of 0.08 to 0.6 W/m-k 
 

For gases thermal conductivity lies in the range of 0.005 to 0.05 W/m-k  
The conductivity of the fluid related to dynamic viscosity (ȝ) 

k =  1 + 
4.5

2n ȝCv ; 
l  
where, n = number of atoms in a molecule 

 

Sequence of thermal conductivity 
 

Pure metals > alloy > non-metallic crystal and 

amorphous > liquid > gases 
 
 

Wiedemann and Franz Law (based on experimental results) 



 

 

  

 

 

  
The ratio of the thermal and electrical conductivities is the same for all metals at the same 

temperature; and that the ratio is directly proportional to the absolute temperature of the 

metal.’’  

䍈 
 k α T or 

 k 
=C  

υ υT 
 

    
 

 
Where 

k = Thermal conductivity at T(K)  
υ = Electrical conductivity at T(K)  

C = Lorenz number = 2.45 × 10 
−8  wΩ / k2 

 

This law conveys that: the metals which are good conductors of electricity are also good 

conductors of heat. Except mica. 
 

Thermal Resistance: (Rth) 
 

Ohm’s Law: Flow of Electricity  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Voltage Drop = Current flow × Resistance 

 

Thermal Analogy to Ohm’s Law:  

T = qRth 
 

Temperature Drop = Heat Flow × Resistance  
 
 
 
 
 
 
 
 
 
 
 

 

A. Conduction Thermal Resistance: 
 

 

 
 
 
 
 

  

(i) Slab ( Rth ) = 

L  
 

k
A 

 

   
 

(ii) Hollow cylinder ( Rth ) = 

n ( r2 / r1) 
 

2π kL  
 

   
 



 

 

 

 
(iii) Hollow sphere  ( R ) = r2 − r1          

 

           
 

    th  4π kr1r2 
        

 

              
 

 B. Convective Thermal Resistance: ( R  ) = 1      
 

        
 

      th   
hA 

  
 

            
 

 
C. Radiation Thermal Resistance: ( Rth ) = 

     1  
 

 

F ı A (T1 + T2 )(T1
2
 + T2

2
 ) 

 

         
 

 

1D Heat Conduction through a Plane Wall 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Thermal    resistance) 

∑ Rt 
=

 

1 

+ 

L 

+ 

1 

        

 

h1 A kA h2 A  

    
 

 



 

 

 

1D Conduction (Radial conduction in a composite 

cylinder) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1D Conduction in Sphere 
 

Inside Solid:   

1 d
 kr 2 

dT
 = 0 r2 

dr dr
 

  

    
1 − ( r1 / r) 

 
 

ĺ T (r ) = Ts ,1 − {Ts ,1 
−

 
T

s,2 }  

 

 − ( r1 
 

 

   1 / r2 ) 
 

        
 

ĺ qr = − kA dT = 4
π
( k (Ts ,1 

−
 Ts,)2 ) 

dr 1 / r1 − 1 / r2   

ĺ
 
R

t , cond 

=
 

1 / r1 − 1 / r2 
 

 4π k 
 

 

   
  

Isotropic & Anisotropic material 
 
If the directional characteristics of a material are equal /same, it is called an ‘Isotropic 

material’ and if unequal/different ‘Anisotropic material’. 
 

 

 

 

 

 

 
 
 



 

 

Example: Which of the following is anisotropic, i.e. exhibits change in thermal 
conductivity due to directional preferences? 

 

 

 

(a) Wood (b) Glass wool (c) Concrete (d) Masonry brick 

Answer. (a) 

( ) Thermalconductivity 
(
k) 

Thermal diffusivity α = Thermalcapacity ( ρ c) 
  

i. e . α = k unit m 2 s 

 ρc     

The larger the value of α, the faster will be the heat diffuse through the material and its 

temperature will change with time. 
 

– Thermal diffusivity is an important characteristic quantity for unsteady condition situation. 

 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 



 

 

  

 

One Dimensional Steady State 

Conduction 
 
  
 

General Heat Conduction Equation in Cartesian 

Coordinates 

 

Recognize that heat transfer involves an energy transfer across a system boundary. A 

logical place to begin studying such process is from Conservation of Energy (1st Law of – 

Thermodynamics) for a closed system: 

dE 
 

i i 
 

 
 

   

= Q in − W out 
 

dt 
 

 

 system  
 

  
  

The sign convention on work is such that negative work out is positive work in: 

dE 
 

i i 
 

 
 

   
= Q in + W out 

 

dt 
 

 

 system  
 

  
  

The work in term could describe an electric current flow across the system boundary and 

through a resistance inside the system. Alternatively it could describe a shaft turning 

across the system boundary and overcoming friction within the system. The net effect in 

either case would cause the internal energy of the system to rise. In heat transfer we 

generalize all such terms as “heat sources”. 
dE 

 

i i 

 

 
 

   =
 
Q

 in 
+

 
Q

gen 
 

dt 
 

 

 system  
 

  
  

The energy of the system will in general include internal energy, (U), potential energy,  

( 
1
2 mgz ), or kinetic energy, (½ mv2 ). In case of heat transfer problems, the latter two 

terms could often be neglected. In this case,  

E = U = m ⋅ u = m ⋅ c p ⋅ ( T − Tref ) = ρ ⋅ V ⋅ c p ⋅         ( T − 

Tref ) 
 

Where Tref is the reference temperature at which the energy of the system is defined as 

zero. When we differentiate the above expression with respect to time, the reference 

temperature, being constant disappears: 
ρ ⋅ cp ⋅V ⋅ dT   

=
 
Q

in 
+

 
Q

gen 
 

 dT     
 

  

 

   
 

 dt  
system   

  
  

Consider the differential control element shown below. Heat is assumed to flow through 

the element in the positive directions as shown by the 6-heat vectors. 

 
 
 

 



 

 

  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In the equation above we substitute the 6-heat inflows/outflows using the 

appropriate sign: 
ρ ⋅ cp ⋅ ( x  ⋅  y ⋅ z) ⋅ 

dT   
=

 
q

x 
−

 
q

x +Δx 
+

 
q

y 
−

 
q

y+Δy 
+

 
q

z 
−

 
q

z+Δz 
+

 
Q

gen 
 

  dT    i 
 

   

 

   
 

  dt  
system   

   
  

Substitute for each of the conduction terms using the Fourier Law:  
   

∂T 
  

 

    

∂T 
 

 

         
 

ρ ⋅ c p ⋅ ( x ⋅ y ⋅ z ) ⋅ 
    

= -k ⋅ ( y ⋅ z ) ⋅ 
 

- -k ⋅ (  

∂t 

  

∂x 
 

    
system 

    
 

 

        
 

          ∂T    
 

   + −k ⋅ ( x ⋅ z ) ⋅ −  − k ⋅ ( x ⋅  
   

∂y 
 

           
 

 
 

             
 

   
+  −k ⋅ ( x ⋅ y ) ⋅ 

∂T 
+  − k ⋅ ( x ⋅  

   

∂z 
 

             
 

  
 

   ∂T    ∂    ∂T  
 

y ⋅  z ) ⋅ 
   

+ 
 

-k ⋅ ( y ⋅ z ) ⋅ 
   

 
⋅  x 

 

∂x 
    

 

      ∂x    ∂x  
 

 ∂T  ∂       ∂T    
 

z ) ⋅ 
   

− k ⋅ ( x ⋅  z ) ⋅ 
     

  

+    

  

  

  ⋅ y  

∂y ∂y 
 

∂y 
 

            
 

                  
 

y ) ⋅ 
∂T  ∂    

− k ⋅ ( x ⋅  y ) ⋅ 
 ∂T    

 

  

+ 
    

 

   

 
⋅ z 

 

∂z ∂z 

  

∂z 
 

 

            
  

+ q
i
g ( x ⋅  y ⋅  z) 

 

Where q
i
g  is defined as the internal heat generation per unit volume. 

 

The above equation reduces to: 
 

ρ ⋅ c p ⋅ ( x ⋅  y ⋅ z ) ⋅ 
dT 

 

   
∂ 

− k ⋅ ( 

 

 
 

    =  − 
 

 

 

     
 

  
dt 

 

system   ∂x 
 

 

    
 

∂
 

 

+  − −k ⋅ (  

 
 

 
 

 
z ) ⋅ 

 ∂T   
 

y ⋅ 
   

 
⋅ x 

 

 

∂x 
 

      
 

    ∂T   
 

 

z ) 
    

 

x ⋅ ⋅ 
  

 
⋅ y    

 

    ∂y  
  

        
 

         
 

 

 ∂  ∂T   i 
 

+ 
 

 
−k ⋅ ( x ⋅  y ) ⋅ 

 

 
⋅ z + q g ⋅ ( x ⋅  y ⋅  z)  

  
 

 ∂z 

z), 
∂z    

 

Dividing by the volume ( x ⋅ y ⋅      
 

 

ρ ⋅ c p ⋅ 

dT 

 

 

= - 

∂ 

-k ⋅ 

∂T 

- 

∂ 

-k ⋅ 

∂T 
 

 
 

     

 

 

 

 

 

 
 

        
 

 

dt 
 

system 

 
∂x 

 
∂x 

 
∂y 

 
∂y 

 

      
 

 
 

 
- 

∂ 

-k ⋅ 

∂T i 
 

 

 

 

 

 
+ qg 

 

  
 

  ∂z  ∂z  
 

 
 
 

 



 

 

  
Which is the general conduction equation in three dimensions. In the case where k is 

independent of x, y and z then 
 

 ⋅ c p ⋅ dT  

 

 = 
∂ 2T 

+ 
∂ 2T 

+ 
∂2T 

+ 
q

i
g 

 

 
 

k dt 
 

system ∂x 2 ∂y 2 ∂z2 k 

 

      
 

      
  

Define the thermodynamic property, α, the thermal diffusivity: 
 

α =  
k

 

ρ ⋅ cp 
  

Then 
 

 1 ⋅ dT  

 

 = 
∂ 2T 

+ 
∂ 2T 

+ 
∂2T 

+ 
q

i
g 

 

 
 

α dt 
 

system ∂x 2 ∂y 2 ∂z2 k 
 

      
 

      
 

or,              
  

1 

 

dT 

 

 2 q
i
g 

 

  
 

 

⋅ 

 

 

 system 
= 䌛 T + 

 
 

α dt k  

   
 

 

The vector form of this equation is quite compact and is the most general form. However, 

we often find it convenient to expand the del-squared term in specific coordinate systems: 

 

General Heat Conduction equation: 

∂ k ∂T + ∂ k  ∂T + ∂ k ∂T + q
i
 = ρc ∂T i.e. ේ. ( kේ T ) + q

i
 = ρc ∂T 

 

  

 

 y  

 

  

 

  
 

  x         z  g  

∂Ĳ 

g  

∂Ĳ 

 

∂x  ∂x  ∂x  ∂y  ∂z  ∂z     
 

 

For: – Non-homogeneous material. 
 

Self-heat generating.  
Unsteady three- dimensional heat flow. 

 

Fourier’s equation:  

∂ 2T + ∂ 2T + ∂ 2T = 1 ∂T 

∂x 2     ∂y 2     ∂z2    α ∂Ĳ  

or, ේ 2T = α1
 . 

∂
∂TĲ 

 

Poisson’s equation: 
 

i 

∂ 
2
T + ∂ 

2
T + ∂2

T + 
q

g  = 0  

∂x 
2
    ∂y 

2
    ∂z

2
     k  

        or  
i 

            䌛 
2
T + 

q
k

g
  = 0 

 

 
 
 

 

Material: Homogeneous, isotropic 
 

State: Unsteady state  
Generation: Without internal heat 

generation. 

 
 
 

 

Material: Homo, isotopic. 
 

State: Steady. 
 

 

Generation: With heat generation. 

 



 

 

 

Lap lace equation:                
 

   ∂ 2T 
+  

∂ 2T 
+ 

 ∂2T 
= 0 

       
Material: Homogeneous, isotopic.  

   ∂x 2 ∂y 2 
 ∂z2 

       
 

                       
 

  or                      State: Steady. 
 

  ේ 2T = 0                 Generation: Without heat generation. 
 

General  Heat  Conduction  Equation  in  Cylindrical 
 

Coordinates                      
 

                        i       
 

 ∂ 2T 1 ∂T   1 ∂ 2T  ∂ 2T   qg   1 ∂T 
 

 

  

+ 
     

+ 
        

+ 
  

 
+ 

 

= 
     

 

∂r 

2 

r ∂r r 

2  

∂φ 

2  

∂z 

2 

k α ∂Ĳ 

 

              
  

 

For steady, one – D, without heat generation.  
 

 ∂ 2T 

+ 

1 ∂T 

= 0 i .e. 
d  dT 

= 0 
 

       r
 
 

 

 

 

∂r 

2 

r ∂r 

  
 

     dr dr  
 

 

General Heat Conduction Equation in Spherical 

Coordinates 
 

                            i      
 

1 ∂ 2  ∂T    1  ∂ ∂T    1    ∂ 2T  qg  1  ∂T 
 

  

 

 r
 
 

. 
 

 
+ 

   

. 
 

sin ș 
 

 
+ 

     

. 
  

+ 
 

= 
  

. 
  

r 

2   

∂r r 

2 

sin ș 

  

r 

2 

sin 

2 

ș ∂φ 

2 

k α ∂Ĳ 

 

  ∂r       ∂ș ∂ș         
 

 

For one – D, steady, without heat generation 
 

d
 r 2 

dT
 = 0 

dr dr
 

 
 
 
 
 

• Steady State: steady state solution implies that the system condition is not changing 

with time. Thus ∂T / ∂Ĳ = 0. 

• One dimensional: If heat is flowing in only one coordinate direction, then it 

follows  
That there is no temperature gradient in the other two directions. Thus the two 

partials associated with these directions are equal to zero.  
• Two dimensional: If heat is flowing in only two coordinate directions, then it 

follows 

That there is no temperature gradient in the third direction. Thus the partial 

derivative associated with this third direction is equal to zero. 

 
 
 

 



 

 

  
  

 

• No Sources: If there are no heat sources within the system then the term, q
i
g = 0. 

 

 

Note: For temperature distribution only, use conduction equation 
 

Otherwise: Use Q = −kA dx
dt

  
 

Every time Q = −kA  dx
dt

 will give 

least complication to the calculation. 

 

Heat Diffusion Equation for a One Dimensional System 
 

Consider the system shown above. The top, 

bottom, front and back of the cube are 

insulated. So that heat can be conducted 

through the cube only in the x-direction. The 

internal heat generation per unit 
 

volume is q
i
g ( W/m 3 ). 

 

Consider the heat flow through an arbitrary 

differential element of the cube. 

 
 
 
 
 

From the 1st Law we write for the element: 

( E in − E out ) + E gen = Est  
 

q x − q x +Δx + Ax ( x )q
i
g = 

∂
∂Et 

 

q = −kA 
∂T

 

x x  ∂x  

q
 x +Δx 

=
 
q

 x 

+
 

∂qx 

 x 

        
 

∂x 
        

 

              
 

−kA  ∂T + kA ∂T  + A ∂ k ∂T x + A  x q
i
 = ρ A c  x ∂T 

 

x      

 

  

 

∂x 

 x 

∂x 

 x    x g x 

∂t 

 

      ∂x ∂x    
  

 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 ∂ 2T 
+ 

q
i
g 

= 
ρc ∂T 

= 
 1 ∂T 

(When k is constant) 
 

           

 

∂x 2 k k 

 

∂t  α ∂t 

 

      
  

• For T to rise, LHS must be positive (heat input is positive)  
• For a fixed heat input, T rises faster for higher α  
• In this special case, heat flow is 1D. If sides were not insulated, heat flow could be 2D, 

3D. 

 

Heat Conduction through a Plane Wall 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The differential equation governing heat diffusion is: 
d  dT 

= 0 
 

 k   
 

  
 

 dx dx  
 

With constant k, the above equation may be integrated twice to obtain the general 

solution:  

T (x ) = C1 x + C2 
 

Where C1 and C2 are constants of integration. To obtain the constants of integration, we 

apply the boundary conditions at x = 0 and x = L, in which case 
 

T (0) = Ts,1   And T (L) = Ts,2 
 

Once the constants of integration are substituted into the general equation, the 

temperature distribution is obtained: 
 

T ( x ) = ( Ts , 2 − Ts ,1 ) XL + Ts,1 
 

The heat flow rate across the wall is given by: 

q x  = − kA 
dT 

= 
kA ( Ts ,1 − Ts,2 ) = 

T
s ,1 

−
 

T
s,2 

 

dx 

  

L / kA 

 

  L   
  

Thermal resistance (electrical analogy): 
 

Physical systems are said to be analogous if that obey the same mathematical equation. 
 

The above relations can be put into the form of Ohm’s law: 
 
 
 
 
 
 
 
 
 



 

 

  
 
 
 
 
 
 
 
 
 
 
 
 

 

Using this terminology it is common to speak of a thermal resistance: 
 

T = qRth 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A thermal resistance may also be associated with heat transfer by convection at a surface. 

From Newton’s law of cooling, 
 

q = hA (T2 − T∞ ) 

 

The thermal resistance for convection is then 
 

R = Ts − T∞ = 1 
 

  
 

t , conv.  
q hA 

 

  
  

Applying thermal resistance concept to the plane wall, the equivalent thermal circuit for 

the plane wall with convection boundary conditions is shown in the figure below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The heat transfer rate may be determined from separate consideration of each element in 

the network. Since qx is constant throughout the network, it follows that 

 
 
 
 

 



 

 

 

q = 
T

∞ ,1 

−
 
T

s ,1 = 
T

s ,1 

−
 
T

s , 2 = 
T

s , 2 

−
 
T

∞,2   

    

x  
1 / h1 A 

 

L / kA1 / h2 A 
 

   
  

In terms of the overall temperature difference T∞ ,1 − T∞,2 , and the total thermal 

resistance Rtot , The heat transfer rate may also be expressed as 

q = 
T

∞ ,1 

−
 
T

∞,2  
x Rtot  

 

Since the resistances are in series, it follows that 
 

R
tot 

=
 ∑ 

R
t 

=
 

1 

+ 

L 

+ 

1 
 

h1 A kA h2 A     
  

Uniform thermal conductivity 

 

T = T − T1 − T2 × x  ⇒  

   
 

 1  
L 

   
 

      
 

Q = 

T1 − T2   

= 

 T1 − T2 
 

( L / kA )  ( 
R

th )cond. 
 

 
 

T − T1  = x 
  

T2 − T1 L 

 

Variable thermal conductivity, k = ko ( 1 + βT ) 
 

Use Q = −kA 
dT

dx and integrate for t and Q both 

∴ Q = k A 
T

1 
−
 
T

2 
 

m L 

 1   1 
2
 2Qx  

12 
 

and T = − 
 

+  T1 + 
 

 − 
 

 

 

β β 
 

 

     β k o A 
 

         
  

Where  k m = k 0 1 + β 
 (T1 + T2 ) = k o (1+ βTm )  

   

2 

 
 

       
 

If k = k0 f(t) Then, km = 

 
+k 

 T2  
 

 0 ∫ f (T )dt 
 

(T   − T ) 
 

 2  1 T  
 

       1  
 

 

Heat Conduction through a Composite Wall 
 

Consider three blocks, A, B and C, as shown. They are insulated on top, bottom, front and 

Back. Since the energy will flow first through block A and then through blocks B and C, we 

Say that these blocks are thermally in a series arrangement. 

 
 
 
 
 
 
 
 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The steady state heat flow rate through the walls is given by: 
 
 
 
 
 

 

Where U = 

1 
 

R  A 
 

as 
tot 

 

 
 

 
 
 

q 
 = 

T
∞ ,1 

−
 
T

∞ , 2  
T

∞ ,1 

−
 
T

∞,2   = UA T  
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is the overall heat transfer coefficient . In the above case, U is expressed 
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Series-parallel arrangement:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

  
The following assumptions are made with regard to the above thermal resistance model:  

1) Face between B and C is insulated.  
2) Uniform temperature at any face normal to X. 

 

Equivalent Thermal Resistance 

 

The common mistake student do is they take length of equivalent conductor as L but it 

must be 2L. Then equate the thermal resistance of them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The Overall Heat Transfer Coefficient 
 

Composite Walls:  
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Overall Heat Transfer Coefficient 
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Heat Conduction through a Hollow Cylinder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 

Uniform Variable thermal conductivity,  
 

conductivity k = ko (1+βt)                              
 

For temperature distribution,       Use  Q = −k A dt                    
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Logarithmic Mean Area for the Hollow Cylinder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Invariably it is considered conferment to have an expression for the heat flow through a 

hollow cylinder of the same form as that for a plane wall. Then thickness will be equal to 
 

(r2 − r1 ) and the area A will be an equivalent area Am shown in the Now, expressions for heat flow through the 

hollow cylinder and plane wall will be as follows. 

Q = 
( t1 − t2 ) 

Heat flows through cylinder  

ln ( r2 / r1 ) 
 

  
  

2π kL 
 
 
 
 
 

 



 

 

 

Q = 
( t1 − t2 ) 

Heat flow through plane wall  

( r2 − r1 ) 
 

  
 

k Am 
 

Am is so chosen that heat flow through cylinder and plane wall be equal for the same 

thermal potential. 
 

    ( t1 − t2 ) 

= 

  ( t1 − t2 ) 
 

    ln ( r2 / r1 )    ( r2 − r1 )   
 

    2π k L       k Am     
 

or. 
  ln (r2 / r1 )  
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   (r2 − r1 )  

 

   

2π k L 
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or Am = 2π L ( r2 − r1 ) =   2π Lr − 2π Lr 
 

      2 1  

          

  ln ( r2 / r1 )  ln ( 2π Lr2 / 2π Lr1 ) 
 

 

 

or Am = 

A2 − A1    
 

 A   
 

  ln 2 A   
 

   1   
 

Where A1  and A2 are inside and outside surface areas of the cylinder. 
  

 

 

Heat Conduction through a Composite Cylinder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Heat Conduction through a Composite Cylinder 
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Thermal Resistance for an Eccentric Hollow Tube 
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Conduction through Circular Conical Rod 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Use Q = − kA dxdt
 = −k 

π
4 c 2 x2 dxdt
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Heat Conduction through a Hollow Sphere 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Uniform Conductivity 
 

For temperature Distribution 
 

use,  d    2  dt = 0 
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For Q,  Use  Q = − KA 
dt 

= −k 4π r 
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For variable conductivity: 
 

For both Q, and t use Q = −k 
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Logarithmic Mean Area for the Hollow Sphere 

 

For slab For cylinder  sphere 
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HEAT FLOW RATE (Remember) 
 

a) Slab, Q = 
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b) Cylinder, Q = 
2π L (T1 − T2 ) 
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c) Sphere, Q = 4
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Composite cylinder, Q = 
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              Critical Thickness of Insulation  
 

• Note: When the total thermal resistance is made of conductive thermal 

resistance (Rcond.) and convective thermal resistance (Rconv.), the addition 

of insulation in some cases, May reduces the convective thermal 

resistance due to increase in surface area, as in the case of cylinder and 

sphere, and the total thermal resistance may actually decreases resulting 

in increased heat flow. 
 

Critical thickness: the thickness up to which heat flow increases and after which heat 

flow decreases is termed as critical thickness. 

Critical thickness = (rc – r1) 
 
 
 
 
 
 

 

For Cylinder: 

 
 
 
 
 
 

 

For Sphere: 
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Common Error: In the examination hall student’s often get confused about 
h 

or 
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A little consideration can remove this problem, Unit of 
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Critical Thickness of Insulation for Cylinder 
 

• For Sphere , Q = 
 4π (t1 − tair ) 
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(i) For cylindrical bodied with r1 < rc , the heat transfer increase by adding 

insulation till r2 = r1 as shown in Figure below (a). If insulation thickness is 

further increased, the rate of heat loss will decrease from this peak value, 

but until a certain amount of insulation denoted by r2 ' at b is added, the 

heat loss rate is still greater for the solid cylinder. This happens when r1 is 

small and rc is large, viz., the thermal conductivity of the insulation k is 

high (poor insulation material) and hο is low. A practical application 
 

would be the insulation of electric cables which should be a good 

insulator for current but poor for heat. 

(ii) For cylindrical bodies with r1 > rc , the heat transfer decrease by adding 

insulation (Figure below) this happens when r1 is large and r2 is small, viz., 

a good insulation material is used with low k and hο is high. In stream and 

refrigeration pipes heat insulation is the main objective. For insulation to be 

properly effective in restricting heat transmission, the outer radius must be 

greater than or equal to the critical radius. 

 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For two layer insulation  
Inner layer will be made by lower conductivity materials. And outer layer will be 

made by higher conductive materials. 
 

A. For electrical insulation: i.e. for electric cable main object is heat dissipation; 

Not heat insulation, Insulation will be effective if rc > r1 . In this case if we add 

insulation it will increase heat transfer rate. 
 

B. For thermal insulation: i.e. for thermal insulation main object is to reduction of 

heat transfer; Insulation will be effective if rc << r1 . In this case if we add insulation 

it will reduce heat transfer rate. 
 

C. Plane wall critical thickness of insulation is zero. If we add insulation it will 

reduce heat loss. 



 

 

 
 
 
 
 
 

  

Heat Conduction with Internal Heat Generation 
 

• 

Volumetric heat generation, ( qg ) =W/m3 
 

• 

Unit of qg is W/m3 but in some problem we will find that unit is W/m2 . In this case 

they assume that the thickness of the material is one metre. If the thickness is L 
• 

meter then volumetric heat generation is ( qg ) W/m3  but total heat generation is 
 

• 

q g L W/m2 surface area. 
 
 

 

Plane Wall with Uniform Heat Generation 
 

Equation: For a small strip of dx (shown in figure below) 
Q

x 

+
 

Q
 g 

=
 

Q
( x +dx ) 

 

䍈 Qx  + Q g = Qx + dx
d

 ( Qx )dx 
 

䍈 Q g = dx
d

 ( Qx )dx 
 

䍈 q
•
 g Adx = dx

d
 ( Qx 

)dx That given   
• 

d
 2

t
 + 

qg  = 0 − ( i ) 
 

dx2 k  
For any problem integrate this 

Equation and use boundary 

condition 
   •              

 

 dt 
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x = c1 

       
− ( ii) 

 

 

dx k 
        

 

              
 

     •             
 

or t + 
q g x2 

= c1 x + c2   − ( iii)  

 
 

      2k          
 

Use boundary condition and find 
 

C1 & C2  than proceed. 
 

For Q   = −kA dt  
 

  

    

 

    x     
 

          dx at x 
 

䍈 Q0 = −kA 
dt 

Heat Conduction with Internal Heat Generation 
 

 

    

  

 

    
 

         dx x =0, 
 

  Q = −kA dt  
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         dx x =L 
 

 



 

 

 
 
 

For objective :              
 

         •     
 

Maximum temperature, t max = 

qg L
2

 + t
wall ( If both wall temperature,twall ) 

 

 8k  

              
 

Current Carrying Electrical Conductor  
 

Q  = q  AL = I
2
R = I2 ρL     

 

  •             
 

g 
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A J = = current density ( amp./m

2 ) 
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g 
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Where,  
I = Current flowing in the conductor, 

 

R = Electrical resistance, 
 

ρ = Specific resistance of resistivity, 
 

L = Length of the conductor, and 
 

A = Area of cross-section of the conductor. 
 
 
 

If One Surface Insulated 
  

 dt  
 

Then   
 will be = 0  

  
 

 dx x =o  
 

i.e. use end conditions 
 

( i ) 
dt 

= 0 
 

 

 

 

 

 
 

 dx x =0  
 

( ii) At   x = L, t = tL 
 

Maxmimum temperature will occured 

at x = 0, 
 

But start  from that  first Equation , 
 

• 
d2t + 

qg  = 0  

dx2 k 
 
 
 
 
 
 
 
 
 
 

 

If one surface insulated 



 

 

 
 
 
 

Maximum Temperature (Remember)    
 

  •  

L2  

     
 

t
max = 

q g 

+ tw For plate both wall temperature ( t w ); at centre of plate, x = 

L  
 

 8k 2   

       
 

  •  

R2 

     
 

t = q g + t For cylinder,at centre, ( r = 0)    
 

        

max   4k w     
 

        
 

  •  
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t = q g + t For sphere,at centre ,( r = 0)    
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Starting Formula (Remember) 
 

        •             
 

d 2t  
+ 

 
q

g    
= 0 

      
 

dx2 
  

k 
         

 

                 
 

               •       
 

d    dt   q
g 

.r = 0  

 r       

 +    
 

  

dr k 

 

dr          
 

                •     
 

d  2 dt   qg .r 2 = 0   r          

 +     
 

     

dr k 

  
 

dr             
 

 

 

For Plate 
 

 

For cylinder 
 

 

For Sphere 

 

 

Temperature Distribution – with Heat Generation 
 

(a) For both sphere and cylinder 
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2
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max w 

                    

                       
 

(b) Without heat generation     
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( ii) For cylinder , 
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Dielectric Heating 
 

Dielectric heating is a method of 

quickly heating insulating 

materials packed between the 

plates (of an electric condenser) 

to which a high frequency, high 

voltage alternating current is 

applied. 

 
 
 
 
 
 
 
 
 

Dielectric heating 

 

Where ș1 = (tw1 − ta ) temperature of electrode (1) above surroundings. ș2 = (tw 2 − ta ) 

temperature of electrode (2) above surroundings. 
 

If we use ș form then it will be easy to find out solution. That so why we are using 

the following equation in ș form 
• 

d2ș + 
q

g  = 0  

dx2 k 
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  ș + 
q
k

g . 
x
22  = c1 x + c2 

 
 

Using boundary condition x = 0, ș = ș1 ; 
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− kA dș = h A ( t − t )  
    

 

 

 1 w1 a  
 

 dx x =0     
 

 
 

 

ș = ș 
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(but don’t use it as a boundary condition) 

 

And Heat generated within insulating material = Surface heat loss from both 

electrode: 



 

 

 
 

 

Cylinder with Uniform Heat Generation  
 

For Solid cylinder one boundary condition  
 

dt 
= 0 

 
 

 

 

 

 
 

  
 

dr r=0   
  

( as maximum temperature) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solid Cylinder with Heat generation 
 
 

 

For Hollow Cylinder with Insulation 
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Heat Transfer through Piston Crown 
 

           •    = W/m 2 
 

Here heat generating, qg  
 

                 
 

Q = −k 2π rb 
dt

 , Q  (Note unit) 
 

= q  × 2π rdr  
 

           •       
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dr 
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∴ Q g = ( Qr )dr 
           

 

            
 

 dr                
 

           •       
 

that gives, 
d dt   qg  

.r = 0 
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Heat transfer through piston crown 
 

 

Heat conduction with Heat Generation in the Nuclear 

Cylindrical Fuel Rod 
 

• 

Here heat generation rate qg (r) 
 

• •  
 r  2 

 

q = q 1 −   
 

    

 

  

 

  
 

  

 
R 

 

 

 

g 0    
 

     fr   
 

then use , 
 d   dt   

 

  r    
 +  

  

dr 

 

   dr    
 

 
 
 
 

 
 

•  
 

q
g 

.r = 0  

k 
 

 
 

 

Where, qg = Heat generation rate at radius r.  
 

qo = Heat generation rate at the centre  
 

 of the rod (r = 0). And  
 

R
fr = Outer radius of the fuel rod. Nuclear Cylinder Fuel Rod  

  
  

Nuclear Cylinder Fuel Rod with ‘Cladding’ i.e. Rod covered with protective materials 

known as ‘Cladding’. 
 
 

Critical Thickness of Insulation 
 

GATE-1. A steel steam pipe 10 cm inner diameter and 11 cm outer diameter is 

covered with insulation having the thermal conductivity of 1 W/mK. If 

the convective heat transfer coefficient between the surface of 

insulation and the surrounding air is 8 W / m2K, then critical radius of 

insulation is:   [GATE-2000] 

(a) 10 cm (b) 11 cm (c) 12.5 cm (d) 15 cm 



 

 

 

GATE-2. It is proposed to coat a 1 mm diameter wire with enamel paint (k = 0.1 
 

 W/mK) to increase heat transfer with air. If the air side heat transfer 
 

 coefficient is 100 W/m2K, then optimum thickness of enamel paint 
 

 should be: 

(b) 0.5 mm (c) 1 mm 

[GATE-1999] 
 

 (a) 0.25 mm (d) 2 mm 
 

GATE-3. For a current wire of 20 mm diameter exposed to air (h = 20 W/m2K), 
 

 maximum heat dissipation occurs when thickness of insulation (k = 0.5 
 

 W/mK) is:   [GATE-1993; 1996] 
 

 (a) 20 mm (b) 25 mm (c) 20 mm (d) 10 mm 
 

  
GATE-4. Two rods, one of length L and the other of length 2L are made of the 

same material and have the same diameter. The two ends of the longer 

rod are maintained at 100°C. One end of the shorter rod Is maintained 

at 100°C while the other end is insulated. Both the rods are exposed to 

the same environment at 40°C. The temperature at the insulated end of 

the shorter rod is measured to be 55°C. The temperature at the mid- 
point of the longer rod would be: 

(c) 55°C 

[GATE-1992] 
 

(a) 40°C (b) 50°C (d) 100°C 
  

IES-1. Upto the critical radius of insulation: [IES-1993; 2005]  
(a) Added insulation increases heat loss 

(b) Added insulation decreases heat loss 

(c) Convection heat loss is less than conduction heat loss  
(d) Heat flux decreases 

 

IES-2. Upto the critical radius of insulation [IES-2010]  
(a) Convection heat loss will be less than conduction heat loss  
(b) Heat flux will decrease 

(c) Added insulation will increase heat loss  
(d) Added insulation will decrease heat loss 

 

IES-3. The value of thermal conductivity of thermal insulation applied to a 

 hollow spherical vessel containing very hot material is 0·5 W/mK. The 

 convective heat transfer coefficient at the outer surface of insulation is 

 10 W/m2K.    

 What is the critical radius of the sphere? [IES-2008] 

 (a) 0·1 m (b) 0·2 m (c) 1·0 m (d) 2·0 m 

IES-4. A hollow pipe of 1 cm outer diameter is to be insulated by thick 

 cylindrical insulation having thermal conductivity 1 W/mK. The surface 

 heat transfer coefficient on the insulation surface is 5 W/m2K. What is 

 the  minimum  effective  thickness  of  insulation  for  causing  the 

 reduction in heat leakage from the insulated pipe? [IES-2004] 

 (a) 10 cm (b) 15 cm (c) 19.5 cm (d) 20 cm 

IES-5. A metal rod of 2 cm diameter has a conductivity of 40W/mK, which is to 

 be insulated with an insulating material of conductivity of 0.1 W/m K. If 

 the convective heat transfer coefficient with the ambient atmosphere is 

 5 W/m2K, the critical thickness of insulation will be: [IES-2001; 2003] 

 (a) 1 cm (b) 2 cm (c) 7 cm (d) 8 cm 

IES-6. A copper wire of radius 0.5 mm is insulated with a sheathing of 

 thickness 1 mm having a thermal conductivity of 0.5 W/m – K. The 

 outside surface convective heat transfer coefficient is 10 W/m2 – K. If 

 the thickness of insulation sheathing is raised by 10 mm, then the 

 electrical current-carrying capacity of the wire will: [IES-2000] 

 (a) Increase  (b) Decrease  

 (c) Remain the same (d) Vary   depending   upon   the 

   electrical conductivity of the wire 



 

 

IES-7. In current carrying conductors, if the radius of the conductor is less 

 than  the  critical  radius,  then  addition  of  electrical  insulation  is 

 desirable, as   [IES-1995] 

(a) It reduces the heat loss from the conductor and thereby enables the 

conductor to carry a higher current. 

(b) It increases the heat loss from the conductor and thereby enables the 

conductor to carry a higher current. 

(c) It increases the thermal resistance of the insulation and thereby enables the 

conductor to carry a higher current. 

(d) It reduces the thermal resistance of the insulation and thereby enables the 

conductor to carry a higher current. 
 

IES-8. It is desired to increase the heat dissipation rate over the surface of an 
 

 electronic  device  of  spherical  shape  of  5  mm  radius  exposed  to 
 

 convection with h = 10 W/m2K by encasing it in a spherical sheath of 
 

 conductivity 0.04 W/mK, For maximum heat flow, the diameter of the 
 

 sheath should be: 

(c) 12 mm 

[IES-1996] 
 

 (a) 18 mm (b) 16 mm (d) 8 mm 
 

IES-9. What is the critical radius of insulation for a sphere equal to? 
 

 k = thermal conductivity in W/m-K  [IES-2008] 
 

                h = heat transfer coefficient in W/m2K   
 

(a) 2kh (b) 2k/h (c) k/h (d) 2kh 
  

 

IES-10.  Assertion (A): Addition of insulation to the inside surface of a pipe 

always reduces heat transfer rate and critical radius concept has no  
significance. [IES-1995] Reason (R): If insulation is added to the inside 

surface, both surface resistance and internal resistance increase. 
 

(a) Both A and R are individually true and R is the correct explanation of A 

(b) Both A and R are individually true but R is not the correct explanation of A 

(c) A is true but R is false 

(d) A is false but R is true 
 

IES-11. Match List-I (Parameter) with List-II (Definition) and select the correct 

answer using the codes given below the lists:   [IES-1995] 

List-I         List-II 

A. Time constant of a thermometer of radius ro  1. hro/kfluid 

B. Biot number for a sphere of radius ro   2. k/h 

C. Critical thickness of insulation for a wire of radius ro 3. hro/ksolid 

D. Nusselt number for a sphere of radius ro   4. h2π ro l ρcV 

Nomenclature:  h:  Film  heat  transfer  coefficient, ksolid:  Thermal 

conductivity of solid, kfluid: Thermal conductivity of fluid, ρ: Density, 

c: Specific heat, V: Volume, l: Length.     
Codes: A B C D  A B C D 

(a) 4 3 2 1 (b) 1 2 3 4 

(c) 2 3 4 1 (d) 4 1 2 

3 
  

 
 
 

IES-12. An electric cable of aluminium conductor (k = 240 W/mK) is to be 

 insulated with rubber (k = 0.15 W/mK). The cable is to be located in air 

 (h = 6W/m2). The critical thickness of insulation will be: [IES-1992] 

 (a) 25mm (b) 40 mm (c) 160 mm (d) 800 mm 

IES-13. Consider the following statements:  [IES-1996] 

1. Under certain conditions, an increase in thickness of insulation 

may increase the heat loss from a heated pipe. 



 

 

2. The heat loss from an insulated pipe reaches a maximum when the 

outside radius of insulation is equal to the ratio of thermal 

conductivity to the surface coefficient.  
3. Small diameter tubes are invariably insulated. 

4. Economic insulation is based on minimum heat loss from pipe. 
Of these statements 

(b) 2 and 4 are correct 
 

(a) 1 and 3 are correct 
 

(c) 1 and 2 are correct (d) 3 and 4 are correct. 
  

IES-14. A steam pipe is to be lined with two layers of insulating materials of 

different thermal conductivities. For minimum heat transfer  
(a) The better insulation must be put inside 

(b) The better insulation must be put outside 

(c) One could place either insulation on either side  
(d) One should take into account the steam temperature before deciding as to 

which insulation is put where. 
    

IES-15. Water jacketed copper rod “D” m in diameter is used to carry the 

current. The water, which flows continuously maintains the rod 

temperature at TioC during normal operation at “I” amps. The 
 

electrical resistance of the rod is known to be “R” Ω /m. If the coolant 

water ceased to be available and the heat removal diminished greatly, 

the rod would eventually melt. What is the time required for melting to  
occur if the melting point of the rod material is Tmp? [IES-1995] [Cp = 

specific heat, ρ = density of the rod material and L is the length of the 

rod] 

 ρ (π D 
2
 / 4)C 

p 
(T  − T )  (T  − T )  ρ(T  − T )  C 

p 
(T  − T ) 

 

(a ) 
  mpi 

(b ) 
mpi 

(c ) 
mpi 

(d ) 
 mpi 

 

 
I 

2
 R 

 ρ I 2 R I 
2
 

  
I 

2
 R 

 

        
 

 
 

IES-16.  A plane wall of thickness 2L has a uniform volumetric heat source q* 

(W/m3). It is exposed to local ambient temperature T∞  at both the ends  
(x = ± L). The surface temperature Ts of the wall under steady-state 

condition (where h and k have their usual meanings) is given by:  
[IES-2001]  

(a) T = T + q 
*
 L (b) T = T + q 

*
 L

2
 (c) T = T + q 

*
 L

2
 (d) T = T + q 

*
 L

3
 

 

    
 

s ∞  h 
s ∞  2k 

s ∞  h 
s ∞  2k  

            
 

 

IES-17. The temperature variation in a large 

plate, as shown in the given figure, 

would correspond to which of the 

following condition (s)?  
1. Unsteady heat 

2. Steady-state with variation of k 

3. Steady-state with heat generation 
 

Select the correct answer using the codes given below: [IES-1998]  
Codes: (a) 2 alone (b) 1 and 2 (c) 1 and 3 (d) 1, 2 and 3 

 

IES-18. In a long cylindrical rod of radius R and a surface heat flux of qo the  
uniform internal heat generation rate is:   [IES-1998] 

 

(a) 
2q0 

(b) 2q 

0 

(c) 
q0  

(d) 
q0  

 

R R R2 

 

    
   

IAS-1. In order to substantially reduce leakage of heat from atmosphere into 

cold refrigerant flowing in small diameter copper tubes in a refrigerant 

system, the radial thickness of insulation, cylindrically wrapped 
 

around the tubes, must be: [IAS-2007] 



 

 

(a) Higher than critical radius of insulation\  

(b) Slightly lower than critical radius of insulation  
(c) Equal to the critical radius of insulation  
(d) Considerably higher than critical radius of insulation 

 

IAS-2. A copper pipe carrying refrigerant at – 200 C is covered by cylindrical 

insulation of thermal conductivity 0.5 W/m K. The surface heat transfer 

coefficient over the insulation is 50 W/m2 K. The critical thickness of 
 

the insulation would be:  [IAS-2001] 

(a) 0.01 m (b) 0.02 m (c) 0.1 m (d) 0.15 m 
 
 

 
 

 

GATE-1. Ans. (c) Critical radius of insulation (rc) = hk = 
1

8 m = 12.5cm 

GATE-2. Ans. (b) Critical radius of insulation (rc) = hk = 100
0.1

 m = 1 mm 

 

䍈 Critical thickness of enamel point = rc − ri = 1 − 
1
2 = 0.5 mm 

 

GATE-3. Ans. (b) Maximum heat dissipation occurs when thickness of insulation is 

critical.  

Critical radius of insulation ( rc ) = hk = 
0.5

20 m = 25 mm 

Therefore thickness of insulation = rc − ri = 25 − 
20

2 = 15 mm 
 

GATE-4. Ans. (c)  
 

IES-1. Ans. (a)  

IES-2. Ans. (c) The thickness upto which heat flow increases and after which heat flow 

decreases is termed as Critical thickness. In case of cylinders and spheres it is 

called 'Critical radius'.  

IES-3. Ans. (a) Minimum q at ro = 

(k/h) = rcr (critical radius) 
 

 

 

 

 

 

 

 

 

 

 

IES-4. Ans. (c) Critical radius of insulation (rc) = hk = 

1
5 = 0.2m = 20cm 

 

( r )C = rc − r1 = 20 − 0.5 = 19.5cm 
 

IES-5. Ans. (a) Critical radius of insulation (rc ) = 
Kh = 

0.1
5 = 0.02m = 

2cm Critical thickness of insulation (t ) = rc − r1 = 2 − 1 = 1cm  

IES-6. Ans. (a)  

IES-7. Ans. (b) 

IES-8. Ans. (b) The critical radius of insulation for ensuring maximum heat transfer by  

conduction (r) = 
2k 

= 
2 × 0.04 

m = 8 mm. Therefore diameter should be 16 mm.  

h 10 
 

   
 

 
䍈  Critical thickness of insulation 



 

 

S-9. Ans. (b) Critical radius of insulation for sphere in 
2k 

and for cylinder is k/h  

h 
 

  
 

IES-10. Ans. (a) A and R are correct. R is right reason for A. 
 

IES-11. Ans. (a) 
 

IES-12. Ans. (a) 
 

IES-13. Ans. (c)  

IES-14. Ans. (a) For minimum heat transfer, the better insulation must be put inside.  

IES-15. Ans. (a) 
 

IES-16. Ans. (a) 
 

IES-17. Ans. (a)  

IES-18. Ans. (a) 

 

IAS-1. Ans. (d) At critical radius of insulation heat leakage is maximum if we add more 

insulation then heat leakage will reduce. 
 

IAS-2. Ans. (a) Critical radius of insulation ( rc ) = 
k 

= 
0.5 

m = 0.01m 
 

h 50 
 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 



 

 

 Heat Transfer from Extended 

Surfaces (Fins) 
 

 

Theory at a Glance (For IES, GATE, PSU) 
 
 

Convection: Heat transfer between a solid surface and a moving fluid is governed by the 

Newton’s cooling law: q = hA ( Ts − T∞ ) Therefore, to increase the convective heat 

transfer, One can. 
 

• Increase the temperature difference (Ts − T∞ ) between the surface and the fluid. 
 
• Increase the convection coefficient h. This can be accomplished by increasing the fluid 

flow over the surface since h is a function of the flow velocity and the higher the 

velocity,  
• The higher the h. Example: a cooling fan.  
• Increase the contact surface area A. Example: a heat sink with fins.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

dqconv = h ( dAs )( T − T∞ ), Where dAs is the surface area of the element 
 

d
 2
T

 − hP
 

(
 T − T∞ 

)
 = 0, A second - order, ordinary differential equation dx2 

kAC  

Define a new variable ș ( x ) = T ( x ) − T∞ , so that    
 

 d2ș 2 2  hP  
( D 

2 2 
)ș = 0 

 

  

− m ș = 0, Where m 
 

= 
 

or 
 

− m 
 

 dx2  kA  
 

     C      
 

Characteristics equation with two real roots: + m & – m 

The general solution is of the form  

ș ( x ) = C1 e mx + C 2 e
−mx 

  
To evaluate the two constants C1 and C2, we need to specify two boundary conditions:  
The first one is obvious: the base temperature is known as T (0) = Tb 

The second condition will depend on the end condition of the tip. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Common type of configuration of FINS 

 

Heat Flow through “Rectangular Fin” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Heat Flow through a Rectangular Fin 
 

Let, l = Length of the fin (perpendicular to surface from which heat is to be removed. 
 

b =  Width of the fin (parallel to the surface from which heat is to be removed.  
y =  Thickness of the fin.  
p = Perimeter of the fin =2(b + y)|. 



 

 

 

to   =  Temperature at the base of the fin. And  

ta  = Temperature of the ambient/surrounding fluid.  
k =  Thermal conductivity (constant). And 

 

h =  Heat transfer coefficient (convective). 
 

Q = − kA  dT 

x c   dx 
 

Q  = − Q  + ∂ Q dx  
 

    
 

x +dx    x  ∂x x  
 

Qcov = h( P .dx )(t − ta )  
 

k A  d 2T dx − h( Pdx )(t − t ) = 0  
  

c  2     a  
 

 dx         
 

d 2T − hP ( t − t )= 0 

dx 2 kAc a 

 

Temperature excess, ș = t − ta 
 

  dș 
= 

dt   
 

d 2ș 

 

dx dx 
 

 

   
 

2     hP 
 

 

− m ș = 0 or m = 

 
 

dx2
 kA 

 

      c 
  

 
 

 

Heat Dissipation from an Infinitely Long Fin (ℓĺ∞ ): 
 

d2ș − m2ș = 0 
 

dx2  

at x = 0, t = t0 i.e. ș = ș0 

at x = ∞ , t = ta i.e ș = 0 
 

θ = C1 e mx + C2 e
−mx 

 

θ 0  = C1 +C2  
0 = C1 ⋅ e m ( 

∞
 ) + C2 ⋅ e 

−∞m ∴ C1 = 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 

4 
 

Temperature Distribution 
 

θ = θ0 e-mx 
  

or ș = e−mx 
ș0  

 
 
 
 
 
 
 
 
 
 
 
 

 

Temperature Distribution 

 

(a) By considering the heat flow across the root or base by conduction.  
(b) By considering the heat which is transmitted by convection from the surface. 

 

 

(a)  By considering the heat flow across the root or base by conduction 
 

Q 
fin 

= − kA dt 
 

   
 

 c 
 

   dx at x =0 
  

 t − ta 
= e − mx   ⇒ t − t = (t − t ) e−mx 

 

      
 

 t0 − ta 
     a 0  a 

 

            
 

dt = − m(t − t  ) e−mx      
 

  

  

 

      
 

    0 a       
 

dx x =0            
 

Q  = k A m(t − t ) = k A  hP  ⋅ș 
0 

 

fin 
 

k A 
 

 

      c 0  a  c    
 

              c  
   

⇒ Q fin  =  hP kAc  ×ș0 
 
 

(b) By considering the heat which is transmitted by convection from the 

surface 
 

 ∞    ∞  
 

Q fin  = ∫ h P dx (t − ta ) = ∫h P (t0 − ta ) e −mx dx 
 

 0   

1 

0  
 

⇒ Q  = h P (t − t ) =  hP kA ⋅ș  
 

 

m 

 
 

 fin 0 a c o 
  



 

 

 
 
 
  

Heat Dissipation from a Fin Insulated at the Tip: 
 

At x = 0, ș = ș0  & at x = l , 
dt 

= 0 
 

dx 
 

c1 + c2 = ș0 

 
 

  
 

ș = c e mx + c e
−mx   

 

1 2   
  

or t − t  = c e mx + c e 
−
 mx = mc e mx − mc e

−mx 
 

    a 1   2 1 2 
 

0 = c e ml − c e
−ml     

 

   1  2      
 

ș = cos h {m( l − x)}    
 

ș0   cos h( ml)     
 

Q 
fin 

= − kA dt      
 

      

    c     
 

      dx x =0   
 

Q fin = kAc m(t0 − ta ) tan h ( ml) 
Heat dissipation from a fin insulated 

 

            
 

䍈
 
Q

 fin = hPkAc ×ș0 tan h( ml) 
 

at the tip 
  

 
 

 

Heat Dissipation from a Fin Losing Heat at the Tip  

At x = 0, ș = ș 0 and  x =                
 

− k A dt = h A ( t − t );         dt = − hș at x = l  

              

 

         
 

  c   c  a           

dx 
 

k 
 

   dx x =l                 
 

 ș
  = 

t
 

−
 

t
a   = 

 cos h m( l − x ) +   h  sin h {m( l − x)}  

 

km 
 

            
 

 ș0  t0 − ta     cos h( ml ) +    h sin h( ml)   

     

km 
 

                    
 

          
tan h( ml) + 

 h        
 

         

 

     

 

    
 

          

km 
    

 

Q
 fin 

=
 
 hPkAc ⋅ ș0 ⋅ 

       
 

    
 

  

h 
          

 

         1 +  tan h( ml)      
 

         

km 

    
 

                        
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Heat dissipation from a fin losing heat at the tip 



 

 

 
 
 
 
 
 
 

  

Temperature Distribution for Fins Different Configurations 
 

Case Tip Condition 
 

 Convection heat 
 

A transfer: 
 

 hθ(L)=-k(dθ/dx)x=L 
 

B 
Adiabatic 

 

(dș / dx)x =L = 0 
 

 
 

 Given 
 

C temperature:  

θ ( L) = șL 
 

D 
Infinitely long fin 

 

ș( L) = 0 
 

 
 

  

Temp. Distribution 
 

coshm(L -x)+  
h

  sinhm 

(
 L -x

)
 

mk  

coshmL+ h sinhmL 
mk  

 

cosh m( L − x)  
cosh mL  

ș
L sinh m ( L - x ) + sinh m ( L - x ) 

șb  
sinh mL   

e−mx 

  

Fin heart transfer 
 

 sinhmL+  h  coshmL  
  

 

Mθǐ 
 mk      

 

coshmL+ h 
 

sinhmL 
 

 
 

 

  
 

  mk      
 

 M șο tanh mL    
 

     ș 
L 
 

 

  cosh mL −   
 

 

     
 

 
Mșο 

    
ș

b 
 

 

sinh mL 
   

 

     
 

 

Mșο 

 
 

θ = T − T∞ , m2 = hP 

kAc  

șb = ș (0) = Tb − T∞ , M = hPkAc șb  

 

Correction Length 
 

¾ The correction length can be determined by using the formula:  
Lc = L+ ( Ac /P), where Ac is the cross-sectional area and P is the 

Perimeter of the fin at the tip. 
 

¾ Thin rectangular fin: Ac  = Wt, P=2(Wet)≈2W, since t << W 
 

Lc  = L+ ( Ac /P) = L+ (Wt/2W) = L+ (t/2) 

 

¾ Cylindrical fin: Ac  = ( π /4) D
2
 , P= π D, Lc  = L+( Ac /P) = L+(D/4) 

 

¾ Square fin: Ac =W2, P=4W, 
 

Lc  = L+ ( Ac /P) = L+ ( W
2
 /4W) = L+ (W/4). 

 

Fin with Internal Heat Generation — Straight Fin 
 

d2ș − m2ș + 
q•

g  = 0 
 

dx2 k  

䍈 ș = C1 cos h ( mx ) + C2 sin h ( mx ) + 

q•g 
 

km2 
 

Then use boundary condition. 



 

 

 
 
  

Composite Fin; No Temperature Gradient Along the 

Radial Direction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As no temperature Gradient along the radial direction 
 

 

∴ Q X = − ( Ai ki + Ao ko ) 

d
dx

ș
 Qo = hPdx.ș 

∴  − ∂
∂
x (șx )dx = Qc 

  

∴  d 2ș 

dx2 
 

∴  m = 

  
 

  hP   
. ș = 0 

 

−    

 

 

k A + k A 
 

 

  
 

i   i o o  
  

h P  

ki Ai + ko Ao 
 

 

Efficiency and Effectiveness of Fin 

Actual heat transferred by the fin (Qfin )  

Efficiency of fin(Șfin 
)
 
=

 Maximumheat that would be transferred if whole surface 

of the fin maintained at the base temperature( Qmax ) 
 
 

 

Effectivenessof fin ( İ fin )= 
Heat loss with fin   

 

Heat loss without fin 
 

  
 

i ) For infinitely long fin, (Șfin ) = 
1 

 

m 
 

    
 

 



 

 

 
 

ii ) For insulated tip fin,(Șfin ) = 
tan h ( m )  

 

 

m 
 

      
 

iii ) For infinitely long fin,(䌜fin ) = 
 k P  

 

 

h Ac 
 

      
 

iv ) For insulated tip fin,(䌜fin ) = 
 k P × tan h ( m )  

  
 

      h Ac 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Thermal resistance concepts for fin 

 

Effectiveness, (İfin) 

ε
fin  

=
 

Q
with fin 

= 

kP 

= 

hP kAc (t0 − ta ) 
 

Q
without fin h Ac h Ac ( t0 − ta ) 

 

   
  

If the ratio 
P 

is Ĺ İ fin Ĺ 
 

 
 

 Ac 
 

(1) Due to this reason, thin and closely spaced fins are preferred, but boundary 

layer is the limitation. 



 

 

 
 

 

 (ii) Use of fin is only recommended if is small. Boiling, condensation, high 

 velocity fluid etc, No use of fin.  

(iii) k Ĺ İ Ĺ so use copper, aluminium etc.  
 

 

ε
fin 

=
 

Ș
fin 

×
 

Surface area of the fin   
 

 

    

 

   

Cross-section area of the fin   
 

Biot Number           
 

    į         
 

 Internal resistance of fin material   
   

hį 

  

y 

 

      
 

B =   k   = Note: where, į =  

         

 

 

i    

 1k 
 2 

 

       
 

 External resistance of fluid on the fin surface  

 

      
 

        

      h       
  

If Bi <1 then 䌜> 1 ĺ in this condition only use fin. 

If Bi =1 then 䌜= 1ĺ No improvement with fin. 

If Bi >1 then 䌜< 1 ĺ Fin reduced heat transfer. 
 

 

Don’t use fin: when? 
 

When value of h is large: (i) Boiling. 
 

(ii) Condensation. 

(iii) High velocity fluid. 
 

The fin of a finite length also loss heat by tip by convection. We may use for 

that fin the formula of insulated tip if 

 
= l + 

y  
 

Corrected length,  l c 
 

 (VIMP for objective Question)  

2 

 

    
 

Design of Rectangular fin 

(i) For insulated tip, l = 0.7095 

yBi  

(ii) For real fin, (loss head by tip also) Bi = 1  
 

 

The Conditions for Fins to be Effective are: 
 

(i) Thermal conductivity (k) should be large.  
(ii) Heat transfer co-efficient (h) should be small.  
(iii) Thickness of the fin (y) should be small. 

 

⇒ The straight fins can be of rectangular, triangular, and parabolic profiles; parabolic 

fins are the most effective but are difficult to manufacture. 



 

 

 
 

 

 

¾ To increase İf , the fin’s material should have higher thermal conductivity, k. 

 

¾ It seems to be counterintuitive that the lower convection coefficient, h, the 

higher İf . But it is not because if h is very high, it is not necessary to enhance 

heat transfer by adding heat fins. Therefore, heat fins are more effective if h is 

low. Observation: If fins are to be used on surfaces separating gas and liquid. Fins 

are usually placed on the gas side. (Why?) 

 

¾ P/ Ac should be as high as possible. Use a square fin with a dimension of W by W 

as an example: P = 4W, Ac = W
2
 , P/ Ac = (4/W). The smaller W, the higher the P/ 

Ac , and the higherİ f . 

 

¾ Conclusion: It is preferred to use thin and closely spaced (to increase the total 

number) fins. 

 

The effectiveness of a fin can also be characterized as 
 

İ 
f 

= q f = qf  = ( Tb − T∞ ) / Rt f = 

R
t h 

 

     
 

  

q   hAc ( Tb − T∞ ) 

 

( Tb − T∞ ) / Rt h 

 

R
t f 

 

     
 

It is a ratio of the thermal resistance due to convection to the thermal resistance of a fin. 

In order to enhance heat transfer, the fin's resistance should be lower than that of the 

resistance due only to convection. 

 

 

Estimation of Error in Temperature Measurement in a 

Thermometer Well 

1. Thermometric error = 

t
 l − tf  

 

t o − tf 
 

  
 

2. Error in temperature in measurement =  (t1 − t f ) 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

  
Estimate of error in Temperature Measurement in a thermometer well 

 

Assume No heat flow in tip i.e. Insulated tip formula. 
 

∴   șx  = cos h{ m(  − x)}    
 

  șo     cos h ( m )   
 

At x = 
ș    t − tf  1   

Thermometric error  

 

1 =     =   =  

  

t − t 
 

cos h( m ) 
 

 ș 
o 
  

f 
   

 

       o       
 

 

Note (I): If only wall thickness į is given then 

P = π (di + 2į ) ≈ π di  
Acs = π diį 

 

∴  m = 
hP 

= 
h × π di  

= 
h      

 

k A 
c 

k × π d į kį     
 

       
 

   i        
 

(ii) If (a) di & į given    or  (b) do & į given then   
 

or ( c ) di & į given   where  P = Actual = π do ;  A = π (d 2 − d 2 ) 
 

   o i  

            

           4 
  

 

Heat Transfer from a Bar Connected to the Two Heat 

Sources at Different, Temperatures 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Heat Transfer from a Bar connected between two sources of different 

temperature 

  d2ș 2 
 

(i) Same fin equation 

 

− m ș = 0 

 

dx2 
  

(ii) Boundary condition (1) at x = 0 ș = ș1 
 

     at x =  ș = ș2   
 

(iii) ș = ș1 sin h {m( − x )} + ș2 sin h (mx)  [Note: All sin h]  
 

     

    sin h (m )         
 

        cos h (m ) − 1   
 

(iv) ș = ∫ h P dx ⋅ ș =  hPkA × (ș + ș 
2 

)   Heat loss by convection  

  
 

   c 1   

sin h (m ) 
  

 

  o         
   

(v) Maximum temperature occure at, ddx
ș

 

= 0 i.e. ș1 cos h {m( − x )} =ș2 cos h (mx) 

 

(vi) Q = − kA dș  
 
 and Q = −kA dș  

 
 

 

  
 

      
 

 

1  dx 
 

x = 0 
 

2  dx 
 

x =l 
 

    
  

䍈 Q = Q1 − Q2  



 

 

 
 
 

GATE-1. A fin has 5mm diameter and 100 mm length. The thermal conductivity of 

fin material is 400 Wm−1K−1. One end of the fin is maintained at 130ºC 

and its remaining surface is exposed to ambient air at 30ºC. If the 

convective heat transfer coefficient is 40 Wm-2K-1, the heat loss (in W) 

from the fin is:   [GATE-2010] 

(a) 0.08 (b) 5.0 (c) 7.0 (d) 7.8 
  
GATE-2. When the fluid velocity is doubled, the thermal time constant of a 

thermometer used for measuring the fluid temperature reduces by a  
factor of 2. [GATE-1994]  

IES-1. From a metallic wall at 100°C, a metallic rod protrudes to the ambient 

 air. The temperatures at the tip will be minimum when the rod is made 

 of:   [IES-1992] 

 (a) Aluminium (b) Steel (d) Copper (d) Silver 

IES-2. On heat transfer surface, fins are provided [IES-2010] 

(a) To increase temperature gradient so as to enhance heat transfer  
(b) To increase turbulence in flow for enhancing heat transfer  
(c) To increase surface are to promote the rate of heat transfer  
(d) To decrease the pressure drop of the fluid 

 

IES-3. The temperature distribution in a stainless fin (thermal conductivity 

 0.17 W/cm°C) of constant cross -sectional area of 2 cm2 and length of 1- 

 cm, exposed to ambient of 40°C (with a surface heat transfer coefficient 

 of 0.0025 W/cm20C) is given by (T – T∞ ) = 3x2 – 5x + 6, where T is in °C and 

 x is in cm. If the base temperature is 100°C, then the heat dissipated by 

 the fin surface will be:  [IES-1994] 

 (a) 6.8 W (b) 3.4 W (c) 1.7 W (d) 0.17 W 
 
 
 

IES-4. The insulated tip temperature of a rectangular longitudinal fin having 
 

 an excess (over ambient) root temperature of θo is:   [IES-2002] 
 

 
(a) șo tan h( ml) (b) 

șo 
(c)  

șo tan h( ml)  
(d) 

șo   
 

 

sin h( ml) ( ml) cos h( ml) 
 

          
 

IES-5. The efficiency of a pin fin with insulated tip is:   [IES-2001] 
 

 (a) tan hmL  (b) tan hmL  (c)  mL  (d)  ( hA / kP )0.5  
 

 

( hA / kP )0.5 

   

tan hmL 

 

tan hmL 

 

    mL     
 

 

IES-6. A fin of length 'l' protrudes from a surface held at temperature to 

greater than the ambient temperature ta. The heat dissipation from the 

free end' of the fin is assumed to be negligible. The temperature 

 dt   
 

gradient at the fin tip   is: [IES-1999]  

 
 

dx x =l   
  

 
(a) Zero (b) 

t1 − ta    
(c) h (to − tl ) (d)  

to − tl   
 

 

to − ta l 
 

       
 

IES-7. A fin of length l protrudes from a surface held at temperature To; it 
 

 being higher than the ambient temperature Ta. The heat dissipation 
 

 from the free end of the fin is stated to be negligibly small, What is the 
 

   dT        
 

 temperature gradient     

 at the tip of the fin?    [IES-2008]  

         

    dx  x =l        
 

 (a) Zero (b) To − Tl  (c) h(T − T ) (d)  Tl − Ta   

    
 

   l     o a  
To − Ta  



 

 

          
 

IES-8. Which one of the following is correct?     [IES-2008] 
 

 The effectiveness of a fin will be maximum in an environment with 
 

 (a) Free convection        (b) Forced convection 
 

 (c) Radiation        (d) Convection and radiation 
 

IES-9. Usually fins are provided to increase the rate of heat transfer. But fins 
 

 also act as insulation. Which one of the following non-dimensional 
 

 numbers decides this factor?      [IES-2007] 
 

 (a) Eckert number        (b) Biot number      
 

 (c) Fourier number        (d) Peclet number     
 

IES-10. Provision of fins on a given heat transfer surface will be more it there 
 

 are:             [IES-1992] 
 

 (a) Fewer number of thick fins (b) Fewer number of thin fins 
 

 (c) Large number of thin fins (d) Large number of thick fins 
 

IES-11. Which one of the following is correct?     [IES-2008] 
 

 Fins are used to increase the heat transfer from a surface by 
   

(a) Increasing the temperature difference  
(b) Increasing the effective surface area 

(c) Increasing the convective heat transfer coefficient 

(d) None of the above 

IES-12.  Fins are made as thin as possible to: [IES-2010] 

(a) Reduce the total weight 

(b) Accommodate more number of fins 

(c) Increase the width for the same profile area 

(d) Improve flow of coolant around the fin 
 

IES-13. In order to achieve maximum heat dissipation, the fin should be  
designed in such a way that: [IES-2005] 

(a) It should have maximum lateral surface at the root side of the fin 

(b) It should have maximum lateral surface towards the tip side of the fin 

(c) It should have maximum lateral surface near the centre of the fin 

(d) It should have minimum lateral surface near the centre of the fin 
 

IES-14. A finned surface consists of root or base area of 1 m2 and fin surface 

 area of 2 m2. The average heat transfer coefficient for finned surface is 

 20 W/m2K. Effectiveness of fins provided is 0.75. If finned surface with 

 root or base temperature of 50°C is transferring heat to a fluid at 30°C, 
 then rate of heat transfer is:  [IES-2003] 

 (a) 400 W (b) 800 W (c) 1000 W (d) 1200 W 

 

IES-15. Consider the following statements pertaining to large heat transfer 

 rate using fins:   [IES-2002] 

1. Fins should be used on the side where heat transfer coefficient is 

small 

2. Long and thick fins should be used 

3. Short and thin fins should be used 

4. Thermal conductivity of fin material should be large 

Which of the above statements are correct? 

(a) 1, 2 and 3 (b) 1, 2 and 4 (c) 2, 3 and 4 (d) 1, 3 and 4 

 

IES-16. Assertion (A): In a liquid-to-gas heat exchanger fins are provided in the  
gas side. [IES-2002] Reason (R): The gas offers less thermal resistance 

than liquid  
(a) Both A and R are individually true and R is the correct explanation of A 

(b) Both A and R are individually true but R is not the correct explanation of A 



 

 

(c) A is true but R is false 

(d) A is false but R is true 
 

IES-17. Assertion (A): Nusselt number is always greater than unity.  
Reason (R): Nusselt number is the ratio of two thermal resistances, one 

the thermal resistance which would be offered by the fluid, if it was 

stationary and the other, the thermal resistance associated with  
convective heat transfer coefficient at the surface. [IES-2001] 

(a) Both A and R are individually true and R is the correct explanation of A 

(b) Both A and R are individually true but R is not the correct explanation of A 

(c) A is true but R is false 

(d) A is false but R is true 
 

 
  

IES-18.  Extended surfaces are used to increase the rate of heat transfer. When 

the  convective  heat  transfer  coefficient  h  =  mk,  the  addition  of 

extended surface will: [IES-2010] 

(a) Increase the rate of heat transfer 

(b) Decrease the rate of heat transfer 

(c) Not increase the rate of heat transfer 

(d) Increase the rate of heat transfer when the length of the fin is very large 

 

IES-19. Addition of fin to the surface increases the heat transfer if hA / KP is: 

 (a) Equal to one (b) Greater than one [IES-1996] 

 (c) Less than one (d) Greater than one but less than two 

IES-20. Consider the following statements pertaining to heat transfer through 

 fins:  [IES-1996]  
1. Fins are equally effective irrespective of whether they are on the 

hot side or cold side of the fluid. 

2. The temperature along the fin is variable and hence the rate of heat 

transfer varies along the elements of the fin. 

3. The fins may be made of materials that have a higher thermal 

conductivity than the material of the wall. 

4. Fins must be arranged at right angles to the direction of flow of the 

working fluid. 

Of these statements: 

(a) 1 and 2 are correct (b) 2 and 4 are correct 

(c) 1 and 3 are correct (d) 2 and 3 are correct. 
\  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 

Heat Transfer from a Bar Connected to the Two Heat 

Sources at Different, Temperatures 
 

IAS-1.   A metallic rod of uniform diameter and length L connects two heat 

sources each at 500°C. The atmospheric temperature is 30°C. The 

temperature gradient 
dT 

at the centre of the bar will be: [IAS-2001]  

dL 
 

 

500 

 

500 

   
 

(a) (b) − 
    

 

L / 2 L / 2 
   

 

     
  

− 470 

(c) (d) Zero 

L / 2     



 

 

 

 

GATE-1. Ans. (b) Q = h p K A ș tan h( ml) 
 

m = 
hp 

; P = 2π rl ,  A = 
π 

d2 
 

KA 4  

    
  

Substituting we are getting  

∴  Q=5 watt  
GATE-2. Ans. False  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Previous 20-Years IES Answers 
 
 

IES-1. Ans. (b)  
IES-2. Ans. (c) By the use of a fin, surface area is increased due to which heat flow rate 

increases. Increase in surface area decreases the surface convection resistance, 

whereas the conduction resistance increases. The decrease in convection resistance 

must be greater than the increase in conduction resistance in order to increase the 

rate of heat transfer from the surface. In practical applications of fins the surface 

resistance must be the controlling factor (the addition of fins might decrease the 

heat transfer rate under some situations). 

IES-3. Ans. (b) Heat dissipated by fin surface  

= 
hP  t1 − t2 

= 
0.0025 × 2 

× 
 100 − 40 

= 3.4 W  

kA x / kA 0.17 × 1 1 / 0.17 × 2 
 

    
  

or Heat dissipated by fin surface = h ∫l Pdx × ( t − tα ) 
 

IES-4. Ans. (d) 
  0 

 

   
 

IES-5. Ans. (b)    
 

IES-6. Ans. (a)    
 

 dT  
 

IES-7. Ans. (a) hA(Tat tip – Ta) = – KA  

 = Negligibly small.  

 
 

  dx  x =l  
 

 
 
 



 

 

 
dT  

 

Therefore, the temperature gradient   at the tip will be negligibly small  

  

 dx  x =l  
 

i.e. zero. 
IES-8. Ans. (a) The effectiveness of a fin can also be characterized as 

 

İ 
f 

= 
q

 f = 
q

 f = (Tb − T∞ ) / Rt ,f = 
R

t ,h 
 

     
 

  

q   hAC ( Tb − T∞ ) 
 

( Tb − T∞ ) / Rt ,h 
 R

t ,f 
 

     
 

It is a ratio of the thermal resistance due to convection to the thermal resistance 

of a fin. In order to enhance heat transfer, the fin's resistance should be lower 

than that of the resistance due only to convection. 
IES-9. Ans. (b)            

 

IES-10. Ans. (c)            
 

IES-11. Ans. (b)            
 

IES-12. Ans. (b) Effectiveness (İfin) 

=  hPkAcs (t0 − ta ) 

 

 ε =  
Q

with fin  = kP 
 

 

fin 
             

  Q
without fin 

   

h Acs 
 

h Acs ( t0 − ta ) 
 

       
 

 
If the ratio 

P  
is Ĺ İ fin Ĺ 

  
 

 

A
cs 

  
 

IES-13. Ans. (a)          
 

           
 

IES-14. Ans. (a)  = 

 KP    
⇒ KP = 0.75 ×  20 ×1 

 

 hA    
 

      C       
 

 
q

 fin = (  hPKAC ) ș0    
  

= 20 × 1 ⋅ 20 × 1 × 0.75 × 

20 20 × 0.75 × 20 = 300W 

ෛ = 

 Q
fin 

= 

300 

= 400 W 
 

 Q 75 
 

  without fin    
 

If  < 1; fins behave like insulator.  
IES-15. Ans. (d)  
IES-16. Ans. (c) 

IES-17. Ans. (a) 

IES-18. Ans. (c)  
IES-19. Ans. (c) Addition of fin to the surface increases the heat transfer if hA / KP <<1.   
IES-20. Ans. (d) 

 
 

Previous 20-Years IAS Answers 
 
 

IAS-1. Ans. (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

One Dimensional Unsteady 

Conduction 
 

 

Theory at a Glance (For IES, GATE, PSU) 
 
 

Heat Conduction in Solids having Infinite Thermal 

Conductivity (Negligible internal Resistance-Lumped 

Parameter Analysis) 

 

Biot Number (Bi) 
 

• Defined to describe the relative resistance in a thermal circuit of the 

convection compared 
 

Bi = 
hLC 

= 
LC / kA 

= 
Internal conduction resistance within solid 

 

k 1 / hA External convection resistance at body surface 
 

   
 

 

LC  Is a characteristic length of the body. 
 

Bi → 0: No conduction resistance at all. The body is isothermal. 
 

Small Bi: Conduction resistance is less important. The body may still be approximated as 

isothermal (purple temperature plot in figure) Lumped capacitance analysis can be performed. 

 

 

Large Bi: Conduction resistance is significant. The body cannot be treated as isothermal 

(blue temperature plot in figure). 
 

Many heat transfer problems require the understanding of the complete time history of the 

temperature variation. For example, in metallurgy, the heat treating process can be 

controlled to directly affect the characteristics of the processed materials. Annealing (slow 

cool) can soften metals and improve ductility. On the other hand, quenching (rapid cool) 

can harden the strain boundary and increase strength. In order to characterize this 

transient behavior, the full unsteady equation is needed: 

ρ c 
∂T

 =  k䌛 2T , or 
1

 
∂T

 = 䌛2T  
∂tα ∂t 

Where α = ρk
c is the thermal diffusivity. 

 
 
 
 
 
 
 
 

 



 

 

 

One Dimensional Unsteady Conduction 
 

   

“A heated/cooled body at Ti is suddenly exposed to fluid at T∞ with a known heat 

transfer coefficient. Either evaluate the temperature at a given time, or find time 

for a given temperature.” 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Question: “How good an approximation would it be to say the bar is more or less 

isothermal?” 
 

Answer: “Depends on the relative importance of the thermal conductivity in the 

thermal circuit compared to the convective heat transfer coefficient”. 
The process in which the internal resistance is assumed negligible in 

comparison with its surface resistance is called the Newtonian heating or 

cooling process. The temperature, in this process, is considered to be uniform at 

a given time. Such an analysis is called Lumped parameter analysis because the 

whole solid, whose energy at any time is a function of its temperature and total 

heat capacity is treated as one lump. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

kAL = internal resistance of body. 
 

Now, 
L

 1 
 

kA hA 
 

If k is very high the process in which the internal resistance or is assumed 

negligible in comparison with its surface resistance is called the Newtonian 

heating or cooling process. 

 
 
 
 
 
 
 
 

 



 

 

  
  

Q = − ρVc ddtĲ = h As ( t − ta ) 
 

hA 

= −
 ρVcs 

Ĳ
 

+
 
c

1 
 

= 0, t =ti  

n ( ti − ta ) 
 

θ h As
Ĳ
 

∴ ș1  = e 
ρVc

  

hA  hV  A 2k  hL  αĲ 
 

s Ĳ = 
 ⋅ s  Ĳ = 

c 
 

⋅   

ρVc kAs 
2 
c 

 2 
 

  ρV   k  Lc 
 

where, Bi = Biot number & F0 = 

Where, 
 

ρ =  Density of solid, kg/m3, 

 
 
 
 

 

= Bi × F0 

 

Fourier number 

 

V =  Volume of the body, m3,  

c =  Specific heat of body, J/kgºC, 

h =  Unit surface conductance, W/m2°C,  
t = Temperature of the body at any time, °C, 

As = Surface area of the body, m2,  
tα   =  Ambient temperature, °C, and  
Ĳ =  Time, s. 

 

Now, 
 

ș 

= e
−

 
B

i 

×F
o 

        
 

și         
 

          
 

Q = ρ Vc dt = ρVc  t − t   −hAs e− Bi × Fo = − hA t − t e
−

 
B

i 

×F
o 

 

 

 

 
 

i  
dĲ 

( i    a ) 
ρVc 

  s ( ia )  
 

         
  

Ĳ 
− Bi ×Fo 

 
 

  

Qtotal  = ∫Qi dĲ = ρVc ( ti − ta ) e −1 
 

 
 

0   
 

 

Algorithm 

Step-I: Characteristic Length, 
L

c  = 
V

 
 

As  

Step-II: Biot Number = 
hL

kc 

 

Check Bi ≤ 0.1 or not if yes then 

 

Step-III: Thermal Diffusivity 
 

α = ρk
Cp 

 

Step-IV:  Four numbers ( Fo ) = 
αĲ

2 

Lc 

 

At Ĳ 
c1 = 

 
dt 

t − ta 



 

 

 
 
 
 
 

    
 

Step-

V: 
 t − ta 

= e
−

 
B

i 

×F
o 

  
 

    
 

  ti − ta   
 

       

Step-

VI: 

Q total = ρVc ( ti − 

ta ) e 

− Bi ×Fo 

−1 

 

 
 

Spatial Effects and the Role of Analytical Solutions 
 

If the lumped capacitance approximation can not be made, consideration must be given to 

spatial, as well as temporal, variations in temperature during the transient process. 
 

The Plane Wall: Solution to the Heat Equation for a Plane Wall it Symmetrical Convection 

Conditions. 

• For a plane wall with symmetrical convection conditions and constant properties, 

the heat equation and initial boundary conditions are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note: Once spatial variability of temperature is included, there is existence of seven different 

independent variables. 
 

T = T ( x , t , Ti , T∞ , h,k, α ) 
 

How may the functional dependence be simplified? 
 

• The answer is Non-dimensionalisation. We first need to understand the physics 

behind the phenomenon, identify parameters governing the process, and group them 

into meaningful non-dimensional numbers. 

 

Non-dimensionalisation of Heat Equation and Initial/Boundary Conditions: 
 

The following dimensionless quantities are defined. 

   ∗ ș  T − T䌲 
 

Dimensionless temperature difference: ș = 
  

= 
 

 

ș 
i 

T − T 
 

      i 䌲 
 

 ∗      
 

Dimensionless coordinate: x = 
x       

 

L 
     

 

       
  

Dimensionless time: t∗ = 
α

L2
t F0 

  

The Biot Number: Bi =  hL
 

 

k
solid 



 

 

 
 

 

   
The solution for temperature will now be a function of the other non-dimensional 

quantities 

∗ ∗ 

ș = f ( x , Fo, Bi) 
 

Exact Solution:  

∗ 
䌲

 

ș = ∑C n exp(-ȗ n2 F0 )cos( ȗ n 
 

n −1 
 

4sinȗ 
C

n 
=
 ȗ + n ȗ  

2 n sin(2 n ) 

 
 
∗ 

x) 
 

 

ȗ n tanȗ n = Bi 

 
 
The roots (eigen values) of the equation can be obtained. 

 

The One-Term Approximation F o > 0.2 
 
  ∗   

 

Variation of mid-plane ( x = 0) temperature with time ( F0 ) 
 

∗ 
= 

T − T䌲 ≈ C exp(-ȗ 2 Fo) 
 

ș 0  

 
 

 
Ti − T䌲 

1 1 
 

   
 

 

One can obtain C1  and ȗ1  as a function of Bi. 

 

Variation of temperature with location ( x
•
 = 0) and time ( F0 ): 

 
∗∗ 

= cos(ȗ1x
i
 ) 

 

ș = ș 0 
 

 

Change in thermal energy storage with time: 
 

Est = −Q 

Q = Q  1 − 
sinȗ

1 ș 0 
 

    ∗ 
 

0  
  

 
 

 

ȗ1 
 

    
  

Q0 = ρcV (Ti − T䌲 ) 

 

Can the foregoing results be used for a plane wall that is well insulated on one side and 

convectively heated or cooled on the other? Can the foregoing results be used if an 

isothermal condition (Ts ≠ Ti ) is instantaneously imposed on both surfaces of a plane wall 

or on one surface of a wall whose other surface is well insulated? 

 

Graphical Representation of the One-Term Approximation: 
 

The Heisler Charts  

Midplane Temperature: 
 
 
 
 
 
 
 
 



 

 

 

One Dimensional Unsteady Conduction 
 

S K Mondal’s Chapter 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Temperature Distribution 
 



 

 

 
 
  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

• Assumptions in using Heisler charts: 
 

l. Constant Ti and thermal properties over the body 
 

2. Constant boundary fluid T∞  by step change 
 

3. Simple geometry: slab, cylinder or sphere 
 
 

• Limitations: 
 

l. Far from edges 
 

2. No heat generation (Q = 0) 
 

3. Relatively long after initial times (Fo > 0.2) 
 
 

Radial Systems 
 
Long Rods or Spheres Heated or Cooled by Convection  
 
 

Bi = hr0 / k 
 

F0 = αt / r0
2

 

 
 
 
 
 
 
 

 

Important tips: Pay attention to the length scale used in those charts, and calculate your 

Biot number accordingly. 

 
 
 
 
 
 
 

 



 

 

 
 

OBJECTIVE QUESTIONS (GATE, IES, IAS) 
 
 

 

Previous 20-Years GATE Questions 
 
 

Heat Conduction in Solids having Infinite Thermal 

Conductivity (Negligible internal Resistance-Lumped 

Parameter Analysis) 
 

GATE-1. The value of Biot number is very small (less than 0.01) when  
(a) The convective resistance of the fluid is negligible [GATE-2002]  
(b) The conductive resistance of the fluid is negligible  
(c) The conductive resistance of the solid is negligible  
(d) None of these 

 

GATE-2. A small copper ball of 5 mm diameter at 500 K is dropped into an oil 

bath whose temperature is 300 K. The thermal conductivity of copper is 

400 W/mK, its density 9000 kg/m3 and its specific heat 385 J/kg.K.1f the 

heat transfer coefficient is 250 W/m2K and lumped analysis is assumed 

to be valid, the rate of fall of the temperature of the ball at the  
beginning of cooling will be, in K/s. [GATE-2005]  
(a) 8.7 (b) 13.9 (c) 17.3 (d) 27.7 

 

GATE-3. A spherical thermocouple junction of diameter 0.706 mm is to be used 

for the measurement of temperature of a gas stream. The convective 

heat transfer co-efficient on the bead surface is 400 W/m2K. 

Thermophysical properties of thermocouple material are k = 20 W/mK, 

C =400 J/kg, K and ρ = 8500 kg/m3. If the thermocouple initially at 30°C 

is placed in a hot stream of 300°C, then time taken by the bead to reach 

298°C, is:   [GATE-2004] 

(a) 2.35 s (b) 4.9 s (c) 14.7 s (d) 29.4 s 

 

Previous 20-Years IES Questions 
 
 

Heat Conduction in Solids having Infinite Thermal 

Conductivity (Negligible internal Resistance-Lumped 

Parameter Analysis) 
 

IES-1. Assertion (A): Lumped capacity analysis of unsteady heat conduction 
 

 assumes a constant uniform temperature throughout a solid body. 
 

 Reason (R): The surface convection resistance is very large compared 
 

 with the internal conduction resistance. [IES-2010] 
 

IES-2. The ratio Internal conduction resistance is known as [IES-1992]  

  

  Surface convection resistance  
 

 (a) Grashoff number (b) Biot number  
 

 
 

 



 

 

  

(c) Stanton number (b) Prandtl number  

IES-3.   Which one of the following statements is correct? [IES-2004] 

The curve for unsteady state cooling or heating of bodies  

(a) Parabolic curve asymptotic to time axis  
(b) Exponential curve asymptotic to time axis  
(c) Exponential curve asymptotic both to time and temperature axis  
(d) Hyperbolic curve asymptotic both to time and temperature axis 

 

IES-4. Assertion  (A):  In  lumped  heat  capacity  systems  the  temperature 
 

gradient within the system is negligible [IES-2004] Reason (R): In 

analysis of lumped capacity systems the thermal conductivity of the 

system material is considered very high irrespective of the size of the 

system 

(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R are individually true but R is not the correct explanation of A  
(c) A is true but R is false  
(d) A is false but R is true 

 

IES-5.   A solid copper ball of mass 500 grams, when quenched in a water bath at 

30°C, cools from 530°C to 430°C in 10 seconds. What will be the 

temperature of the ball after the next 10 seconds? [IES-1997] 

(a) 300°C (b) 320°C  

(c) 350°C (d) Not determinable for want of sufficient data 
 

Time Constant and Response of — Temperature 

Measuring Instruments 
 

IES-6. A thermocouple in a thermo-well measures the temperature of hot gas 

flowing through the pipe. For the most accurate measurement of  
temperature, the thermo-well should be made of: [IES-1997] 

 

(a) Steel (b) Brass (c) Copper (d) Aluminium 

 

Transient Heat Conduction in Semi-infinite Solids (h 

or Hj 4.5. 30~5 00) 
 

IES-7. Heisler charts are used to determine transient heat flow rate and  

temperature distribution when: [IES-2005] 

(a) Solids possess infinitely large thermal conductivity  
(b) Internal conduction resistance is small and convective resistance is large  
(c) Internal conduction resistance is large and the convective resistance is small  
(d) Both conduction and convention resistance are almost of equal significance 

 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 
  

 

Previous 20-Years IAS Questions 
 
 

Time Constant and Response of — Temperature 

Measuring Instruments 
 

IAS-1. Assertion (A): During the temperature measurement of hot gas in a duct 

that has relatively cool walls, the temperature indicated by the 

thermometer will be lower than the true hot gas temperature. 
 

Reason(R): The sensing tip of thermometer receives energy from the 
 

hot gas and loses heat to the duct walls. [IAS-2000] 

(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R are individually true but R is not the correct explanation of A  
(c) A is true but R is false  
(d) A is false but R is true 



 

 

 
 
  
 
  

 

Answers with Explanation (Objective) 
 

 

Previous 20-Years GATE Answers 
 
 

GATE-1. Ans. (c) 
 

GATE-2. Ans. (c) 
 

               
V 

      4  
π r 

3      
r 

   
0.005 / 2 

         
 

Charactaristic length(L ) =    =   3    = =  = 8.3333 ×10
−4 m   

A 
     

4π r2 
          

 

            c           3      3            
 

s 
 

Thermal diffusivity, α = 
     k   

= 
     400   

= 1.1544 ×10
−4 

 
 

  

ρcp 
   

9000 × 385 
 

 

                                         
 

Fourier number (Fo) =   αĲ  = 166Ĳ                  
 

  2                     

                       L                               
 

c 
 

Biot number (Bi) = 
   hL         250 × 8.3333 ×10

−4       
 

   c  =                         = 5.208 ×10
−4  

 

              

400 
         

                   k                                
 

Then,                                                   
 

 ș  =  T − Ta = e 

−
 
B

i 

×F
o  or       T − 300  = e−166Ĳ ×5.208×10

−4  
 

ș 
           

500 − 300 
  

 

i  T − T                             
 

    i a                                              
 

or ln(T − 300) − ln 200 = −0.08646Ĳ               
 

or 
 1     dT  = −0.08646 

 
or 

  dT   = −0.08646 × ( 500 − 300) = −17.3K/s  

             
 

    
 

  
 

( T − 300) dĲ 
     

dĲ 

  
 

                               T ≈500 K         
 

                                            
V 

  4 

π r 
3   

r 

  
 

GATE-3. Ans. (b) Characteristic length (Lc) = =  3  = = 0.11767 ×10
−3 m  

   

4π r2 
  

                                            A 3   
 

Biot number (Bi) = hLc  = 400 × ( 0.11767 ×10
−3 ) = 2.3533 ×10

−3  

       
 

                   k                      20             
 

As Bi < 0.1 the lumped heat capacity approach can be used  
 

α =  k =  20     =  5.882 ×10
−6 m2 /s           

 

  

8500 × 400 

           
 

     ρcp                                        
 

Fourier number (Fo) =   αĲ  = 425Ĳ                  
 

  2                   
 

                       L                               
 

c 
 

 ș 
= e 

−
 
F

o 
.B

i 
     

or Fo .Bi = ln 
  ș 

                   
 

      

 

  

 

                 
 

       

și 
                  

 

ș i                                                 
 

                  −3          300 − 30           
 

or 425Ĳ × 2.3533 × 10   = ln               

 
or Ĳ = 4.9 s  

 

                  

                             300 − 298           
 

 
 
 
 
 
 
 
 
 



 

 

  
  

 

Previous 20-Years IES Answers 
 
 

IES-1. Ans. (a)        
 

IES-2. Ans. (b)        
 

IES-3. Ans. (b) 
Q 

= e
−

 
B

i 

×F
o 

       
 

Q        
 

  o        
 

IES-4. Ans. (a) If Biot number (Bi) = hLc = h . V  < 0.1 then use lumped heat capacity  

  

A 
 

    k   k 
 

  
 

       s  
 

approach. It depends on size. 

IES-5. Ans. (c) In first 10 seconds, temperature is fallen by 100°C. In next 10 seconds fall 

will be less than 100°C.  

∴  350°C appears correct solution.  

You don’t need following lengthy calculations (remember calculators are not 

allowed in IES objective tests).  
This is the case of unsteady state heat conduction. 

Tt = Fluid temperature 

To = Initial temperature 

T = Temperature after elapsing time ‘t’ 
Heat transferred = Change in internal energy  

hA ( T − T ) = −mC dT    
 

p   

 

    

     t        
 

This is derived to 
   dt    

 

        
 

ș 
  hAt   

T − T 
 −hA 

 

 

− 
   

or 

   

t 
 

= ș 
ρ C    

= e 
ρC V 

 

    p    ∞ p 
 

ș 
o 

    T  − T   
 

          
 

        o  ∞    
 

−hA 

or  
430

 
−

 
30

 = 0.8 = e
ρC p

V t (t = 10sec)  
530 − 30  

After 20 sec (2t): 
 

−
 
h

A 

T − 30  = eρ C pV (2 t )  
5

3

0

 
−
 

3

0 
 

∴
  

T

 

=

 

3

5

0

°

C  
I

E

S

-6. Ans. (a) IES-7. Ans. 

(d) 

  

− 
ρ

 



 

 

  

or 
T

 
−

 
30

 = (0.8)2 = 0.64 
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                                                                                UNIT-2 

Free & Forced Convection 
 

  
Main purpose of convective heat transfer analysis is to determine: 

 

• Flow field 
 

• Temperature field in fluid 
 

• Heat transfer coefficient, (h) 

 

How do we determine h? 
 

Consider the process of convective cooling, as we pass a cool fluid past a heated wall. This 

process is described by Newton’s law of Cooling; 

q = h ⋅ A ⋅ ( Ts − T∞ ) 
 
 
 
 
 
 
 
 
 
 
 
 

Near any wall a fluid is subject to the no slip condition; that is, there is a stagnant sub 

layer. Since there is no fluid motion in this layer, heat transfer is by conduction in this 

region. Above the sub layer is a region where viscous forces retard fluid motion; in this 

region some convection may occur, but conduction may well predominate. A careful 

analysis of this region allows us to use our conductive analysis in analyzing heat transfer. 

This is the basis of our convective theory. 
 

At the wall, the convective heat transfer rate can be expressed as the heat flux.  
 

• ∂T 
= h ( Ts − T∞ ) 

 

qconv 
= −

 kf 
 

 

 

 
 

  ∂y  y = 0 
 

  −k ∂T 
 

   

 

 

   f  
 

    ∂y  y = 0 
  

Hence, h = ( Ts − T∞ ) 
 

 
  



 

 

 
 
 
 

 ∂T   
 

But   depends on the whole fluid motion, and both fluid flow and heat transfer  

 
 

 ∂y  y = 0   
 

equations are needed. 

 

The expression shows that in order to determine h, we must first determine the 

temperature distribution in the thin fluid layer that coats the wall. 

 

Classes of Convective Flows:  
 
 
 
 
 
 
 
 
 
 
 
 

 

• Extremely diverse.  
• Several parameters involved (fluid properties, geometry, nature of flow, phases 

etc). 

• Systematic approach required.  
• Classify flows into certain types, based on certain parameters.  
• Identify parameters governing the flow, and group them into meaningful non-

dimensional numbers. 

• Need to understand the physics behind each phenomenon. 

 

Common Classifications 
 

A. Based on geometry: 

External flow / Internal flow  
B. Based on driving mechanism:-  

Natural convection / forced convection / mixed convection  
C. Based on nature of flow: 

Laminar / turbulent. 
 

Typical values of h (W/m2k)   

Gases : 2 – 25 
Free convection 

Liquid : 50 –100 
 

Gases : 25 – 250 
Forced convection 

Liquid : 50 – 20,000 
 

Boiling/ Condensation 2500 – 100,000  
 
 
 
 
 
 



 

 

 

Free & Forced Convection 
 
   

How to Solve a Convection Problem? 
 

• Solve governing equations along with boundary conditions  
• Governing equations include 

 

1. Conservation of mass: 
∂
∂ux + 

∂
∂vy = 0 

 

2. Conservation of momentum: 
 

3. Conservation of energy: u 
∂
∂
T

x 

  
 

 ∂u  ∂u  dU  ∂ ∂u 
 

u 
 

+ v 
 

= U 
 

+ 
 

v 
 

 

 

∂x ∂y dx 
  

 

    ∂y ∂y 
  

+ v 
∂T 

= 
∂ 

α 
∂T 

 

  

 

 

 

 

∂y 

  
 

  ∂y  ∂y 
  

For flat plate U = constant;  䍈 
dU 

= 0  

dx 
 

  
 

 

Exact solution: Blasius 
 

į = 4.99 
 

x Rex  

Local friction co-efficient, (Cx ) = 
   Ĳ0   

= 
 0.664                

 

 1 
      

2 
      

Rex 
               

 

                                
 

     

2 ρU 

                        
 

                                     
 

 

Rex  = 

 

Ux 

 

, Ĳ 0 = ȝ 
∂u 

 

 

  

               
 

    
               

 

                  
 

     
V 

             
  ∂y 

 
 y=0 

           
 

                              
 

Average drag co-efficient, ( C D ) = 

1  L            1.328              
 

   

 

∫
0 Cx dx = 

      

  

           
 

  L    ReL            
 

                     1                     
 

Local Nusselt number, ( Nux ) = 0.339Rex 12 Pr3                     
 

Average Nusselt number, ( 

 

)= 0.678 Re L 1 

   1               
 

Nux 2 Pr3               
 

䍈 Local heat transfer co-efficient, ( hx )= 

 
Nux ⋅ k 

     
k 

 1    1  
 

  

= 0.339 
 

Rex2 Pr3 
 

      x        x  

                                       
 

                                    

 1   1 
 

                 
Nux k  

    
k  

 

Average heat transfer co-efficient, ( h) = 
 

= 0.678 
 

⋅ReL2 Pr 3 
 

     L       L  

                                      
  

 

Recall q = h A (Tw −Tα ) heat flow rate from wall.  

 

• In Conduction problems, only some equation is needed to be solved. Hence, only few 

parameters are involved. 

• In Convection, all the governing equations need to be solved.  
⇒ Large number of parameters can be involved. 
 
 
 
 
 
 
 
 

 



 

 

 

Free & Forced Convection 
 

   

Forced Convection: External Flow (over flat plate) 
 

An internal flow is surrounded by solid boundaries that can restrict the development of its 

boundary layer, for example, a pipe flow. External flows, on the other hand, are flows over 

bodies immersed in an unbounded fluid so that the flow boundary layer can grow freely in 

one direction. Examples include the flows over airfoils, ship hulls, turbine blades, etc.  
 
 
 
 
 
 
 
 

 

• Fluid particle adjacent to the solid surface is at rest.  
• These particles act to retard the motion of adjoining layers.  
• Boundary layer effect. 

 

Inside the boundary layer, we can apply the following conservation principles:  

Momentum balance: inertia forces, pressure gradient, viscous forces, body forces. 

Energy balance: convective flux, diffusive flux, heat generation, energy storage. 
 

 

Forced Convection Correlations 
 

Since the heat transfer coefficient is a direct function of the temperature gradient next to 

the wall, the physical variables on which it depends can be expressed as follows: h = f (fluid 

properties, velocity field, geometry, temperature etc.). 
 

As the function is dependent on several parameters, the heat transfer coefficient is usually 

expressed in terms of correlations involving pertinent non-dimensional numbers. 
 

Forced convection: Non-dimensional groupings: — 

 

• Nusselt Number (Nu) hx / k (Convection heat transfer strength) / 

   (conduction heat transfer strength) 
    

• Prandtl Number (Pr) v /α (Momentum diffusivity) / 

   (thermal diffusivity) 
    

• Reynolds Number (Re) U x / ν (Inertia force) / (viscous force) 
    

 

Viscous force provides the dam pending effect for disturbances in the fluid. If dampening is 

strong enough ⇒ laminar flow. 
 

Otherwise, instability ⇒ turbulent flow ⇒ critical Reynolds number. 
 

For forced convection, the heat transfer correlation can be expressed as  

Nu=f (Re, Pr)  
The convective correlation for laminar flow across a flat plate heated to a constant wall  

Temperature is: 
 
 
 
 
 
 
 



 

 

 
 

Free & Forced Convection 
 
  
 
 
 
 
 
 
 
 
 

 

Nu x = 0 . 323.Re x1
2 .Pr1 / 3 

 
 

Where 

Nu x ≡ h.x/k  

Re x ≡ (U ∞ .x. ρ )/ȝ  

Pr ≡ c p .ȝ / k 

 

Physical Interpretation of Convective Correlation 
 

The Reynolds number is a familiar term to all of us, but we may benefit by considering 

what the ratio tells us. Recall that the thickness of the dynamic boundary layer, ǅ, is 
proportional to the distance along the plate, x.  

Re x ≡ (U ∞ .x. ρ )/ ȝ ∞ (U ∞ .į . ρ )/ ȝ = ( ρ .U ∞ 2 )/(ȝ .U ∞  / į) 

 

The numerator is a mass flow per unit area times a velocity; i.e. a momentum flow per unit 

area. The denominator is a viscous stress, i.e. a viscous force per unit area. The ratio 

represents the ratio of momentum to viscous forces. If viscous forces dominate, the flow 

will be laminar; if momentum dominates, the flow will be turbulent. 
 

Physical Meaning of Prandtl Number 
 

The Prandtl number was introduced earlier.  
If we multiply and divide the equation by the fluid density, ǒ, we obtain:  

Pr ≡ ( ȝ / ρ ) (k/ ρ. c p ) = v / a 
 

The Prandtl number may be seen to be a ratio reflecting the ratio of the rate that viscous 

forces penetrate the material to the rate that thermal energy penetrates the material. As a 

consequence the Prandtl number is proportional to the rate of growth of the two boundary 

layers:  

į / į t = Pr1 /3 

 

Physical Meaning of Nusselt Number 
 

The Nusselt number may be physically described as well.  

Nux ≡ h.x/k 

 

If we recall that the thickness of the boundary layer at any point along the surface, ǅ, is 
also a function of x then 

Nu x 䌱 h. 䃓 /k 䌱 ( 䃓/k .A ) / (1 / h.A) 

 

We see that the Nusselt may be viewed as the ratio of the conduction resistance of a 

material to the convection resistance of the same material. 

 
 
 



 

 

  
  

 

Students, recalling the Biot number, may wish to compare the two so that they may 

distinguish the two. 
 

Nu x ≡ h.x/kfluid Bi x ≡ h.x/ksolid 

 

The denominator of the Nusselt number involves the thermal conductivity of the fluid at 

the solid-fluid convective interface; the denominator of the Biot number involves the 

thermal conductivity of the solid at the solid-fluid convective interface. 

 

Local Nature of Convective Correlation 
 

Consider again the correlation that we have developed for laminar flow over a flat plate at 

constant wall temperature 

Nux = 0.323.Rex1
2 .Pr1 /3  

 

To put this back into dimensional form, we replace the Nusselt number by its equivalent, 

hx/k and take the x/k to the other side:  

h = 0.323.(k/x).Rex1
2 .Pr1 /3  

 

Now expand the Reynolds number 

h = 0 . 323.(k/x). (U .x.ρ ) / ȝ 1 2 .Pr1 /3 

 ∞      

We proceed to combine the x terms: 
h = 0.323.k. (U .ρ ) / xȝ 12 .Pr1 /3 

∞  

 

And see that the convective coefficient decreases with x1
2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We see that as the boundary layer thickness, the convection coefficient decreases. Some 

designers will introduce a series of “trip wires”, i.e. devices to disrupt the boundary layer, 

so that the build up of the insulating layer must begin a new. This will result in regular 

“thinning” of the boundary layer so that the convection coefficient will remain high. 

 

Use of the “Local Correlation” 
 

A local correlation may be used whenever it is necessary to find the convection coefficient 

at a particular location along a surface. For example, consider the effect of chip placement 

upon a printed circuit board: 

 
 
 



 

 

  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Here are the design conditions. We know 

that as the higher the operating 

temperature of a chip, the lower the life 

expectancy.  
With this in mind, we might choose to 

operate all chips at the same design 

temperature.  
Where the chip generating the largest 

power per unit surface area should be 

placed? The lowest power? 

 
 

Averaged Correlations 
 

If one were interested in the total heat loss from a surface, rather than the temperature at 

a point, then they may well want to know something about average convective coefficients. 

For example, if we were trying to select a heater to go inside an aquarium, we would not be 

interested in the heat loss at 5 cm, 7 cm and 10 cm from the edge of the aquarium; instead 

we want some sort of an average heat loss. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The desire is to find a correlation that provides an overall heat transfer rate: 
 

Q=h 

L 

.A. T − T  = 

∫ 
h . T − T  .dA = L h . T − T  .dx 

 

 wall ∞ xwall ∞ ∫0    x    wall ∞ 
 

Where hx  and hL , refer to local and average convective coefficients, respectively. 

 

Compare the equations where the area is assumed to be equal to A = (1·L): 
 
 
 

 



 

 

 

h .L. T − T  = L h . T − T  .dx 
 

L wall ∞ ∫0    x    wall ∞ 
 

Since the temperature difference is constant, it may be taken outside of the integral and 

cancelled:  

h L .L = ∫0
L hx .dx 

 

This is a general definition of an integrated average. 

 

Proceed to substitute the correlation for the local coefficient. 
 

L 
0. 323 

k U ∞ . x.ρ  0. 5 1 /3  
 

h
 L 

.L
 
=

 ∫0 
 

. 
 

 

.Pr .dx 
 

x ȝ 

 

      
 

 

Take the constant terms from outside the integral, and divide both sides by k. 
 

U ∞ .ρ  0. 5  1 /3 L 1 0 .5 
 

h L .L/k = 0.323. 
   

 

.Pr . ∫0 
 

 

    

.dx 
 

ȝ 

  
 

      x     
 

Integrate the right side.      

0 .5 

        

L 

 

 

U ∞ .ρ 
 1 /3 

  

x0. 5 
 

 

    
 

h L .L/k = 0.323. 
   

 

.Pr . 
        

 ȝ 
 

0.5 

   
 

 
  

    
 
 
0  

        
 

 

The left side is defined as the average Nusselt number, (NuL ). Algebraically rearrange the 

right side.  

 0.323 U ∞ . ρ  0. 5 1 / 3 0. 5 U ∞ . L.ρ  0. 5 1 /3 
 

Nu L = 
 

. 
 

 

.Pr . L = 0.646. 
 

 

.Pr 
 

0.5 ȝ ȝ 
 

        
 

 

The term in the brackets may be recognized as the Reynolds number, evaluated at the end 

of the convective section. Finally,  

Nu L = 0. 646.Re0L. 5 .Pr1
3  

 

This is our average correlation for laminar flow over a flat plate with constant wall 

temperature. 
 

Reynolds Analogy 
 

In the development of the boundary layer theory, one may notice the strong relationship 

between the dynamic boundary layer and the thermal boundary layer. Reynolds’s noted 

the strong correlation and found that fluid friction and convection coefficient could be 

related. This refers to the Reynolds Analogy. 

Pr = 1, Staton number = 

C
f 

 

 2 
 

 

Conclusion from Reynolds’s analogy: Knowing the frictional drag, we know the 

Nusselt Number. If the drag coefficient is increased, say through increased wall roughness, 

 
 
 
 

 



 

 

  
then the convective coefficient will increase. If the wall friction is decreased, the convective 

coefficient is decreased. 

 

⇒ Laminar, fully developed circular pipe flow: 

Ns " =hA (Ts − Tn ) 
Ļ  

Nu = hD = 4.36 when, q" = constant  

  

D k
f 

 s 
 

   
  

h = 48 k  

[VIMP] 

 

 11  D  
 

 

⇒ Fully developed turbulent pipe flow 

 

NuD = 0.023  Re 0.8 Prn
 

 
 

n = 0.4 for heating 
 

n = 0.3 for cooling  
 

 

Turbulent Flow 
 

We could develop a turbulent heat transfer correlation in a manner similar to the von 

Karman analysis. It is probably easier, having developed the Reynolds analogy, to follow 

that course. The local fluid friction factor, Cf, associated with turbulent flow over a flat 

plate is given as: 
 

Cf  = 0.0592 / Re0x.2 

 

Substitute into the Reynolds analogy:  

( 0.0592 / Re0x. 2 ) / 2 = Nux / RexPr1
3 

 
 

Rearrange to find  
 

Local Correlation 

Nux = 0.0296.Re0x. 8 .Pr1 /3 Turbulent Flow  
Flat Plate 

 

In order to develop an 

average correlation, one 

would evaluate an integral 

along the plate similar to 

that used in a laminar 

flow:  
 
 
 
 

 

Note: The critical Reynolds number for flow over a flat plate is 5 × 105; the critical 

Reynolds number for flow through a round tube is 2000. 



 

 

 
 

 
  

  

 

The result of the above integration is:  
 
 

 

Note: Fluid properties should be evaluated at the average temperature in the boundary 

layer, i.e. at an average between the wall and free stream temperature. 
 
 
 

 

Free Convection 
 

Free convection is sometimes defined as a convective process in which fluid motion is 

caused by buoyancy effects.  
 
 

 

T∞ < Tboundary. layer < Tw 

 

ρ∞ < ρ Boundary layer 

 
 
 
 
 
 

 

Velocity Profiles 
 

Compare the velocity 

profiles for forced and  
natural convection 

shown figure: 
 
 
 
 
 
 

 

Coefficient of Volumetric Expansion 
 

The thermodynamic property which describes the change in density leading to buoyancy in 
 

The Coefficient of Volumetric Expansion, (β). 

β ≡ − 
1

 ⋅ 

∂ρ
 

 

ρ
 
∂T

P =Const.

 

 

Evaluation of β 
 

• Liquids and Solids: β is a thermodynamic property and should be found from 

Property Tables. Values of β are found for a number of engineering fluids. 

 
 
 
 
 



 

 

  
   
• Ideal Gases: We may develop a general expression for β for an ideal gas from the 

Ideal gas law: 

 

Then,       P = ρ.R.T          
 

       ρ = P/R.T         
 

Differentiating while holding P constant:         
 

   

d ρ  

 

 = − 

 

P = − 
ρ .R .T = −  

ρ  

 

     
 

   

dT 
   

R.T 2 
 

R .T 2 T 
 

    
p −Const. 

 
 

 
 

      
 

Substitute into the definition of β           
 

β = 
 1 

            
 

            
 

          
Ideal Gas  

 

T
abs 

       
 

             
 

             
 

             
 

Grashof Number 
 

Because U∞  is always zero, the Reynolds number, [ǒ·U∞ ·D]/Ǎ, is also zero and is no longer 
 

suitable to describe the flow in the system. Instead, we introduce a new parameter for 

natural convection, the Grashof Number. Here we will be most concerned with flow across 

a vertical surface, so that we use the vertical distance, z or L, as the characteristic length. 
 

Gr ≡ g. β .υ 2T .L3 
 
 
 

 

Just as we have looked at the Reynolds number for a physical meaning, we may consider 

the Grashof number: 
 

          3       
 

2 3   

ρ . g . β. T .L . ( ρ.Umax
2 ) 

 

2   
 

Gr ≡ 
ρ . g . β. T .L 

= 
 L         

 

  

ȝ2 
   

ȝ2 . Umax
2 

     
 

              
 

             L2      
 

  Buoyant Force Momentum  
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    Viscous Force 2       
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Free Convection Heat Transfer Correlations 
 

The standard form for free, or natural, convection correlations will appear much like those 

for forced convection except that (1) the Reynolds number is replaced with a Grashof 

 
 

 



 

 

  
   

number and (2) the exponent on Prandtl number is not generally 1/3 (The von Karman 

boundary layer analysis from which we developed the 1/3 exponent was for forced 

convection flows): 
 

Nux  = C .Grxm .Prn Local Correlation. 
 

NuL =C .GrLm .Prn Average Correlation. 

 

Quite often experimentalists find that the exponent on the Grashof and Prandtl numbers 

are equal so that the general correlations may be written in the form: 
 

 m 

Local Correlation 
 

Nux  = C ⋅ Grx .Pr 
 

 m 

Average Correlation 

 

NuL = C ⋅ GrL .Pr 
 

This leads to the introduction of the new, dimensionless parameter, the Rayleigh number,  
Ra: 

 

Rax = Grx . Pr 
 

RaL = GrL . Pr 

 

So, that the general correlation for free convection becomes:  
 
 

 

Nux  = C ⋅ Raxm 
 

 

Nu L  = C ⋅ RaL
m 

 
 
 
 

Local Correlation 

 

Average Correlation  
 

 
 

Laminar to Turbulent Transition 
 

Just as for forced convection, a boundary layer will 

form for free convection. The insulating film will be 

relatively thin toward the leading edge of the surface 

resulting in a relatively high convection coefficient. At 

a Rayleigh number of about 109 the flow over a flat 

plate will transition to a turbulent pattern. The 

increased turbulence inside the boundary layer will 

enhance heat transfer leading to relative high 

convection coefficients, much like forced convection. 
  

Ra < 109 Laminar flow [Vertical Flat Plate] 

Ra > 109 Turbulent flow [Vertical Flat Plate] 
 

Generally the characteristic length used in the 

correlation relates to the distance over which the 

boundary layer is allowed to grow. In the case of a 

vertical flat plate this will be x or L, in the case of a 

vertical cylinder this will also be x or L; in the case of a 

 
 
 



 

 

  

horizontal cylinder, the length will be d. 

 

Critical Rayleigh Number 
 

Consider the flow between two surfaces, each at different temperatures. Under developed 

flow conditions, the interstitial fluid will reach a temperature between the temperatures of 

the two surfaces and will develop free convection flow patterns. The fluid will be heated by 

one surface, resulting in an upward buoyant flow, and will be cooled by the other, resulting 

in a downward flow. 
 
 
 

 

Note that for enclosures it is 
 

customary to develop 

correlations which describe the 

overall (both heated and cooled 

surfaces) within a single 

correlation.  
 
 
 
 

 

Free Convection Inside and 
 

Enclosure  
 
 

If the surfaces are placed closer together, the flow patterns will begin to interfere:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
       

 Free Convection Inside an    Free Convection Inside an  

 Enclosure with Partial Flow    Enclosure with Complete Flow  

 Interference    Interference  
       

       

 

In the case of complete flow interference, the upward and downward forces will cancel, 

cancelling circulation forces. This case would be treated as a pure convection problem since 

no bulk transport occurs. 
 
 
 

 



 

 

  
   
The transition in enclosures from convection heat transfer to conduction heat transfer 

occurs at what is termed the “Critical Rayleigh Number”. Note that this terminology is 

in clear contrast to forced convection where the critical Reynolds number refers to the 

transition from laminar to turbulent flow.  
Racrit = 1000 (Enclosures with Horizontal Heat Flow)  
Racrit = 1728 (Enclosures with Vertical Heat Flow)  

The existence of a Critical Rayleigh number suggests that there are now three flow 

regimes: (1) No flow, (2) Laminar Flow and (3) Turbulent Flow. In all enclosure 

problems the Rayleigh number will be calculated to determine the proper flow regime 

before a correlation is chosen. 
 

Bulk Temperature 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q = mc p (Tb 2 − Tb1 )  

dQ = mc p dTb = h {2π rdr ( Tw − Tb )} 
 

• The bulk temperature represents energy average or ‘mixing cup’ conditions.  
• The total energy ‘exchange’ in a tube flow can be expressed in terms of a bulk 

temperature difference. 
 

Bulk-mean temperature =  total thermal energy crossing a section pipe in 

unit time heat capacity of fluid crossing same section in unit time 
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GATE-1. A coolant fluid at 30°C flows over a heated flat plate maintained at a 

constant temperature of 100°C. The boundary layer temperature 

distribution at a given location on the plate may be approximated as T 

= 30 + 70exp(–y) where y (in m) is the distance normal to the plate and T 

is in °C. If thermal conductivity of the fluid is 1.0 W/mK, the local 

convective heat transfer coefficient (in W/m2K) at that location will be:  
[GATE-2009] 

(a) 0.2 (b) 1 (c) 5 (d) 10 

 

GATE-2. The properties of mercury at 300 K are: density = 13529 kg/m3, specific 

heat at constant pressure = 0.1393 kJ/kg-K, dynamic viscosity = 0.1523 × 

10-2 N.s/m2 and thermal conductivity = 8.540 W/mK. The Prandtl number 

of the mercury at 300 K is:  [GATE-2002] 

(a) 0.0248 (b) 2.48 (c) 24.8 (d) 248 
 

GATE-3. The average heat transfer coefficient on a thin hot vertical plate 

suspended in still air can be determined from observations of the 

change in plate temperature with time as it cools. Assume the plate 

temperature to be uniform at any instant of time and radiation heat 

exchange with the surroundings negligible. The ambient temperature 

is 25°C, the plate has a total surface area of 0.1 m2 and a mass of 4 kg. 

The specific heat of the plate material is 2.5 kJ/kgK. The convective 

heat transfer coefficient in W/m2K, at the instant when the plate 

temperature is 225°C and the change in plate temperature with time 
dT/dt = – 0.02 K/s, is:  [GATE-2007] 

(a) 200 (b) 20 (c) 15 (d) 10 

 

Data for Q4–Q5 are given below. Solve the problems and choose 

correct answers. 
 
Heat is being transferred by convection 

from water at 48°C to a glass plate whose 

surface that is exposed to the water is at 

40°C. The thermal conductivity of water is 
 
0.6 W/mK and the thermal conductivity of 

glass is 1.2 W/mK. The spatial Water 

gradient of temperature in the water at the 

water-glass interface is dT/dy =1 × 104 K/m.  
[GATE-2003] 

 

GATE-4. The value of the temperature gradient in the glass at the water-glass 

interface in k/m is: 

(a) – 2 × 104 (b) 0.0 (c) 0.5 × 104 (d) 2 × 104 

GATE-5. The heat transfer coefficient h in W/m2K is:  

(a) 0.0 (b) 4.8 (c) 6 (d) 750 
 
 
 

 



 

 

 
 

GATE-6. If velocity of water inside a smooth tube is doubled, then turbulent flow 

heat transfer coefficient between the water and the tube will: 
 

(a) Remain unchanged [GATE-1999]  
(b) Increase to double its value  
(c) Increase but will not reach double its value  
(d) Increase to more than double its value 

 

  
 

IES-1. A sphere, a cube and a thin circular plate, all made of same material 

and having same mass are initially heated to a temperature of 250oC 

and then left in air at room temperature for cooling. Then, which one of  

the following is correct? [IES-2008] 

(a) All will be cooled at the same rate  
(b) Circular plate will be cooled at lowest rate  
(c) Sphere will be cooled faster  
(d) Cube will be cooled faster than sphere but slower than circular plate 

 

IES-2. A thin flat plate 2 m by 2 m is hanging freely in air. The temperature of 

 the surroundings is 25°C. Solar radiation is falling on one side of the 

 rate at the rate of 500 W/m2. The temperature of the plate will remain 

 constant at 30°C, if the convective heat transfer coefficient (in W/m2 °C) 

 is:   [IES-1993] 

 (a) 25 (b) 50 (c) 100 (d) 200 

IES-3. Air at 20°C blows over a hot plate of 50 × 60 cm made of carbon steel 

 maintained at 220°C. The convective heat transfer coefficient is 25 

 W/m2K. What will be the heat loss from the plate? [IES-2009] 

 (a) 1500W (b) 2500 W (c) 3000 W (d) 4000 W 

IES-4. For  calculation  of  heat  transfer  by  natural  convection  from  a 

 horizontal  cylinder,  what  is  the  characteristic  length  in  Grashof 

 Number?   [IES-2007] 

(a) Diameter of the cylinder  
(b) Length of the cylinder  
(c) Circumference of the base of the cylinder  
(d) Half the circumference of the base of the cylinder 

 

IES-5.   Assertion (A): For the similar conditions the values of convection heat 

transfer  coefficients  are  more  in  forced  convection  than  in  free 
 

convection. [IES-2009] Reason (R): In case of forced convection system 

the movement of fluid is by means of external agency. 

 

(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R individually true but R in not the correct explanation of A 

(c) A is true but R is false 
 
 
 
  



 

 

 

(d) A is false but R is true  
 

IES-6. Assertion (A): A slab of finite thickness heated on one side and held 

horizontal will lose more heat per unit time to the cooler air if the hot 

surface faces upwards when compared with the case where the hot 

surface faces downwards. [IES-1996] Reason (R): When the hot surface 

faces upwards, convection takes place easily whereas when the hot 

surface faces downwards, heat transfer is mainly by conduction 

through air.  
(a) Both A and R are individually true and R is the correct explanation of A 

(b) Both A and R are individually true but R is not the correct explanation of A 

(c) A is true but R is false 

(d) A is false but R is true 
 

IES-7. For the fully developed laminar flow and heat transfer in a uniformly 

 heated long circular tube, if the flow velocity is doubled and the tube 

 diameter is halved, the heat transfer coefficient will be: [IES-2000] 

 (a) Double of the original value (b) Half of the original value 

 (c) Same as before (d) Four times of the original value 
 

IES-8. Assertion (A): According to Reynolds analogy for Prandtl number equal 

to unity, Stanton number is equal to one half of the friction factor. 

Reason (R): If thermal diffusivity is equal to kinematic viscosity, the 

velocity and the temperature distribution in the flow will be the same.  
(a) Both A and R are individually true and R is the correct explanation of A 

(b) Both A and R are individually true but R is not the correct explanation of A 
 (c) A is true but R is false   [IES-2001] 

 (d) A is false but R is true    

IES-9. The Nusselt number is related to Reynolds number in laminar and 

 turbulent flows respectively as   [IES-2000] 

 (a) Re-1/2 and Re0.8 (b)  Re1/2 and Re0.8   (c) Re-1/2 and Re-0.8 (d) Re1/2 and Re-0.8 

IES-10. In respect of free convection over a vertical flat plate the Nusselt 

 number varies with Grashof number 'Gr' as  [IES-2000] 

 (a) Gr and Gr1/4 for laminar and turbulent flows respectively  

 (b) Gr1/2 and Gr1/3 for laminar and turbulent flows respectively  

 (c) Gr1/4 and Gr1/3 for laminar and turbulent flows respectively 

 (d) Gr1/3 and Gr1/4 for laminar and turbulent flows respectively  

IES-11. Heat is lost from a 100 mm diameter steam pipe placed horizontally in 

 ambient at 30°C. If the Nusselt number is 25 and thermal conductivity 

 of air is 0.03 W/mK, then the heat transfer co-efficient will be: [IES-1999] 

 (a) 7.5 W/m2K (b) 16.2 W/m2K (c) 25.2 W/m2 K (d) 30 W/m2K 
 

IES-12. Match List-I (Non-dimensional number) with List-II (Application) and 

select the correct answer using the code given below the lists: 
List-I     List-II   [IES 2007] 

A. Grashof number   1. Mass transfer    

B. Stanton number   2. Unsteady state heat conduction 

C. Sherwood number   3. Free convection   

D. Fourier number   4. Forced convection   

Codes:   A B C D  A B C D 
 



 

 

 

 

 (a) 4 3 1 2 (b) 3 4 1 2 
 

(c) 4 3 2 1 (d) 3 4 2 1 
 

 

IES-13. Match List-I (Type of heat transfer) with List-II (Governing  
dimensionless parameter) and select the correct answer: [IES-2002] 

List-I       List-II     

A. Forced convection    1. Reynolds, Grashof and Prandtl 

       number    

B. Natural convection    2. Reynolds and Prandtl number 

C. Combined free and forced convection 3. Fourier modulus and Biot number 

D. Unsteady conduction with   4. Prandtl number and Grashof 

convection at surface     number    
Codes: A B C D   A B C D  

(a) 2 1 4 3 (b)  3 4 1 2  

(c) 2 4 1 3 (d)  3 1 4 2  
 

IES-14. Match List-I (Phenomenon) with List-II (Associated dimensionless parameter) 

and select the correct answer using the code given below 

the lists:         [IES-2006] 

List-I      List-II    

A. Transient conduction  1. Reynolds number  

B. Forced convection   2. Grashoff number  

C. Mass transfer    3. Biot number   

D. Natural convection   4. Mach number   

     5. Sherwood number  
Codes: A B C D  A B C D 

(a) 3 2 5 1 (b) 5 1 4 2 

(c) 3 1 5 2 (d) 5 2 4 1 

 

IES-15. Match List-I (Process) with List-II (Predominant parameter associated  
with the flow) and select the correct answer:   [IES-2004] 

List-I      List-II    

A. Transient conduction  1. Sherwood Number  

B. Mass transfer    2. Mach Number  

C. Forced convection   3. Biot Number   

D. Free convection   4. Grashof Number  

     5. Reynolds number  
Codes: A B C D  A B C D 

(a) 1 3 5 4 (b) 3 1 2 5 

(c) 3 1 5 4 (d) 1 3 2 5 
 

IES-16. Which one of the following non-dimensional numbers is used for transition 

from laminar to turbulent flow in free convection? [IES-2007] 

(a) Reynolds number (b) Grashof number 

(c) Peclet number (d) Rayleigh number 

 

IES-17. Match List-I (Process) with List-II (Predominant parameter associated with 

the process) and select the correct answer using the codes given 

below the lists:  [IES-2003] 

List-I  List-II 

A. Mass transfer 1. Reynolds Number 

B. Forced convection 2. Sherwood Number 
 
 

 

 Free convection   3. Mach Number  
 

D. Transient conduction  4. Biot Number   
 

     5. Grashoff Number  
 



 

 

Codes: A B C D  A B C D 
 

(a) 5 1 2 3 (b) 2 1 5 4 
 

(c) 4 2 1 3 (d) 2 3 5 4 
 

 

IES-18. In free convection heat transfer transition from laminar to turbulent 
 

 flow is governed by the critical value of the [IES-1992] 
 

 (a) Reynolds number (b) Grashoff's number  
 

 (c) Reynolds number, Grashoff number (d) Prandtl number, Grashoff number 
 

IES-19. Nusselt number for fully developed turbulent flow in a pipe is given by 
 

 N 
u 

= CR a Pb . The values of a and b are: [IES-2001] 
 

  e   r   
 

(a) a = 0.5 and b = 0.33 for heating and cooling both 

(b) a = 0.5 and b = 0.4 for heating and b = 0.3 for cooling 

(c) a = 0.8 and b = 0.4 for heating and b = 0.3 for cooling 

(d) a = 0.8 and b = 0.3 for heating and b = 0.4 for cooling 
 

IES-20. For natural convective flow over a 

vertical flat plate as shown in the given 

figure, the governing differential 

equation for momentum is:  
u 

∂
 u + v 

∂
 u  = g β (T − T ) + y 

∂
2u 

∂ x∂y∞∂y2   
If equation is non-dimensionalized by   

 

U = u , X = x ,  Y = y and  ș = T − T∞    
 

  

L 
    

U ∞  L T − T   
 

       s ∞   
 

then the term g β (T − T∞ ) , is equal to:  [IES-2001] 
 

(a) Grashof number    (b) Prandtl number 
 

(c) Rayleigh number 

   

(d) 

Grashof number 
 

   ( Reynolds number)2  
 

 

IES-21. Which one of 

the following numbers represents the ratio of kinematic  
viscosity to the thermal diffusivity? [IES-2005] 

(a) Grashoff number (b) Prandtl number  
(c) Mach number (d) Nusselt number 

 

IES-22. Nusselt number for a pipe flow heat transfer coefficient is given by the 

equation NuD = 4.36. Which one of the following combinations of  
conditions does exactly apply for use of this equation? [IES-2004] 

(a) Laminar flow and constant wall temperature 

(b) Turbulent flow and constant wall heat flux 

(c) Turbulent flow and constant wall temperature  
(d) Laminar flow and constant wall heat flux 

 

IES-23. For  steady,  uniform  flow  through  pipes  with  constant  heat  flux 

supplied to the wall, what is the value of Nusselt number? [IES-2007] 

(a) 48/11 (b) 11/48 (c) 24/11 (d) 11/24  
 

IES-24. A fluid of thermal conductivity 1.0 W/m- K flows in fully developed flow 

with Reynolds number of 1500 through a pipe of diameter 10 cm. The 



 

 

heat  transfer  coefficient  for  uniform  heat  flux  and  uniform  wall 
 

temperature boundary conditions are, respectively.  [IES-2002] 
 

(a) 36.57 and 43.64 
W  

(b) 43.64 and 36.57 
W  

 

m2K m2K 
 

 
W 

  
W 

 
 

(c) 43.64 for both thecases (d) 36.57 for both thecases  

   

 m2K  m2K   
 

IES-25.  Which one of the following statements is correct?  [IES-2004] 
 

The non-dimensional parameter known as Stanton number (St) is used 

in  
(a) Forced convection heat transfer in flow over flat plate 

(b) Condensation heat transfer with laminar film layer 

(c) Natural convection heat transfer over flat plate 

(d) Unsteady heat transfer from bodies in which internal temperature gradients 

cannot be neglected 
 

IES-26. A 320 cm high vertical pipe at 150°C wall temperature is in a room with 

still air at 10°C. This pipe supplies heat at the rate of 8 kW into the 

room air by natural convection. Assuming laminar flow, the height of  
the pipe needed to supply 1 kW only is: [IES-2002] 

(a) 10 cm (b) 20 cm (c) 40 cm (d) 80 cm 

 

IES-27. Natural convection heat transfer coefficients over surface of a vertical 

pipe and vertical flat plate for same height and fluid are equal. What  
is/are the possible reasons for this? [IES-2008] 

1.  Same height 2.  Both vertical 

3.  Same fluid 4.  Same fluid flow pattern 

Select the correct answer using the code given below: 

(a) 1 only (b) 1 and 2 (c) 3 and 4 (d) 4 only 

 

IES-28. The average Nusselt number in laminar natural convection from a 

vertical wall at 180°C with still air at 20°C is found to be 48. If the wall 

temperature becomes 30°C, all other parameters remaining same, the 

average Nusselt number will be:  [IES-2002] 

(a) 8 (b) 16 (c) 24 (d) 32 
 

IES-29. For fully-developed turbulent flow in a pipe with heating, the Nusselt 

number Nu, varies with Reynolds number Re and Prandtl number Pr as  

1 
  [IES-2003] 

 

   
 

(a) R 0.5P 
 

(b) R 0.8 P0.2 (c) R 0.8 P0.4 (d) R 0.8 P0.3 
 

3 
 

er er er er 
 

 

IES-30. For laminar flow over a flat plate, the local heat transfer coefficient 'hx' 

varies as x-1/2, where x is the distance from the leading edge (x = 0) of 

the plate. The ratio of the average coefficient 'ha' between the leading 

edge and some location 'A' at x = x on the plate to the local heat transfer 

coefficient 'hx' at A is:  [IES-1999] 

(a) 1 (b) 2 (c) 4 (d) 8 

 

IES-31. When there is a flow of fluid over a flat plate of length 'L', the average 

heat transfer coefficient is given by (Nux = Local Nusselt number; other  

symbols have the usual meaning) [IES-1997] 
 



 

 

 

 
L  

d ( hx ) 

 

1 
L  

k 
L 

 

(a) ∫hx dx (b) (c) ∫hx dx (d) ∫ Nux dx  

dx L L 
 

0    0  0 
 

 

IES-32.  In the case of turbulent flow through a horizontal isothermal cylinder of 

diameter 'D', free convection heat transfer coefficient from the 

cylinder will: [IES-1997] 

(a) Be independent of diameter (b) Vary as D3/4 

(c) Vary as D1/4 (d) Vary as D1/2 

 

IES-33.  Match List-I (Dimensionless quantity) with List-II (Application) and select 

the correct answer using the codes given below the lists: 

 

List-I      List-II   [IES-1993] 

A. Stanton number   1. Natural convection for ideal gases 

B. Grashof number   2. Mass transfer  

C. Peclet number   3. Forced convection  

D. Schmidt number   4. Forced  convection for   small 

      Prandtl number  

Codes: A B C D  A B C D 

(a) 2 4 3 1 (b) 3 1 4 2 

(c) 3 4 1 2 (d) 2 1 3 4 

 

IES-34. Assertion (A): All analyses of heat transfer in turbulent flow must 
 

eventually rely on experimental data. [IES-2000] Reason (R): The eddy 

properties vary across the boundary layer and no adequate theory is 

available to predict their behaviour.  
(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R are individually true but R is not the correct explanation of A  
(c) A is true but R is false  
(d) A is false but R is true 

 

IES-35.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Match the velocity profiles labelled A, B, C and D with the following 

situations:  [IES-1998] 

1. Natural convection 2. Condensation 

3. Forced convection 4. Bulk viscosity ≠ wall viscosity 

5. Flow in pipe entrance   
 



 

 

 

 

Select the correct answer using the codes given below:  
 

Codes: A B C D  A B C D 
 

 (a) 3 2 1 5 (b) 1 4 2 3 
 

 (c) 3 2 1 4 (d) 2 1 5 3 
 

IES-36.  Consider the following statements:    [IES-1997] 
 

If  a  surface  is  pock-marked  with  a  number  of  cavities,  then  as 
 

compared to a smooth surface.      
 

1. Radiation will increase   2.  Nucleate boiling will increase 
 

3. Conduction will increase   4.  Convection will increase 
 

Of these statements:        
 

(a) 1, 2 and 3 are correct    (b) 1, 2 and 4 are correct  
 

(c) 1, 3 and 4 are correct    (d) 2, 3 and 4 are correct  
 

 

IES-37. A cube at high temperature is immersed in a constant temperature 

bath. It loses heat from its top, bottom and side surfaces with heat 

transfer coefficient of h1, h2 and h3 respectively. The average heat  

transfer coefficient for the cube is:  
1 

 
1 

 
1 

[IES-1996] 
 

(a) h1 + h3 + h3 (b) (h1 h3 h3 )1/3 (c) + + (d) None of the above  

 

h2 h3 

 

   h1   
 

IES-38. Assertion (A): When heat is transferred from a cylinder in cross flow to 

an air stream, the local heat transfer coefficient at the forward 

stagnation point is large. [IES-1995] Reason (R): Due to separation of 

the boundary layer eddies continuously sweep the surface close to the 

forward stagnation point.  
(a) Both A and R are individually true and R is the correct explanation of A 

(b) Both A and R are individually true but R is not the correct explanation of A 

(c) A is true but R is false 

(d) A is false but R is true 
 

IES-39. Match List-I (Flow pattern) with List-II (Situation) and select the  
correct answer using the codes given below the lists: [IES-1995] 

List-I List-II  
1. Heated horizontal plate  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 

2. Cooled horizontal plate  
 
 
 
 
 
 
 
 
 
 
 

 

3. Heated vertical plate  
 
 
 
 

4. Cooled vertical plate  
 
 
 
 

 

Codes: A B C D  A B C D 

(a) 4 3 2 1 (b) 3 4 1 2 

(c) 3 4 2 1 (d) 4 3 1 2 
 

IES-40. Consider a hydrodynamically fully developed flow of cold air through a 

heated pipe of radius ro. The velocity and temperature distributions in 

the radial direction are given by u(r) and T(r) respectively. If um, is the 

mean velocity at any section of the pipe, then the bulk-mean  

temperature at that section is given by: [IES-1994]  
ro 

(a) ∫u( r )T (r )r 2dr 
 

0  
ro  

4 ∫u( r )T (r )dr 
(c) 0  

  

 2π r3 
 

 o 
 

 

(b) ∫ u( r ) T (r) dr 

0 3r 2rro 

2 ro 

(d)
 um ro2 ∫0 u( r )T (r )rdr 

  

IES-41.  The velocity and temperature distribution in a pipe flow are given by 

u(r) and T(r). If um is the mean velocity at any section of the pipe, the  

bulk mean temperature at that section is:      [IES-2003] 
 

 r     r  

u( r ) 
 

T (r) 
 

 

(a) ∫0 u( r )T (r )r 2dr (b)  ∫0   dr  

   
 

 0     0  3r   2r 
 

 r
0  u( r )T (r)     2 r

0 
 

(c) ∫   

dr (d) 
 

 ∫u( r )T (r )rdr 
 

 2π r3 u r2 
 

 0 0     m 0 0  
 

 

IES-42. The ratio of energy transferred by convection to that by conduction is 
 

called [IES-1992] 
 

(a) Stanton number (b) Nusselt number  

(c) Biot number (d) Preclet number 

 

IES-43. Free convection flow depends on all of the following EXCEPT 



 

 

 
 

 

 (a) Density (b) Coefficient of viscosity [IES-1992] 

(c) Gravitational force (d) Velocity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

GATE-1. Ans. (b) 
 

Given T  = 30 + 
 
70 e − y    

or 
dT  

= 0 + 70 × e − y .( − 1) = −70  

      

 

  

 

  

      

dy 

 
 

Weknowthat 

       at y=0       
 

                
 

− k dT    = h ( T − T ) or h = 70 ×1 = 1  

 

  

 

   
 

f         s  ∞   

(100 − 30) 
 

   dy  at y=0           
 

GATE-2. Ans. (a) P = ȝCp  =  0.1523 × 10
−2 × ( 0.1393 ×1000) = 0.0248  

         

8.540 

   
 

   r   
k 

             
 

       

dT 
         

 

GATE-3. Ans. (d) Q = mc p = hA ( t − ts )       
 

        

         dt           
 

or 4 × ( 2.5 × 103 )× 0.02 = h × 0.1 × ( 225 − 25)     
 

GATE-4. Ans. (c) K w = 0.6 W/mK; KG = 1.2 W/mK     
 

The spatial gradient of temperature in water at the water-glass interface  

dT = 1 ×10 4 K/m  

=   

 

 
 

    

 dy  w      
 

At Water glass interface, 
 

 dT  dT 
 

Q = K w 
 

 

=
 
K

G   

 

 

 

  
 

 dy w   dy  G 
 

 
 
 
 

 
 

dT  K 
w 

dT  0.6   
 

or   =   
 

 =   × 104 = 0.5 ×104 K/m  

    

1.2 

 

 dy  G  K G dy  w    
  

GATE-5. Ans. (d) Heat transfer per unit area q = h ( Tf – Ti) 
     

Kw 
dT                  

 

     

 

  

 

  

0.6 ×10 
4  

        
 

   
q dy 

    

2 
    

 

or  h = 

                 
 

   

= 
      w  =      

= 750 W/m K 
    

 

T − T  T 
f 

− T    (48 − 40)     
 

  f i    i                  
 

                      

ρVD 0.8 

  1 
 

      

k 
      

 
1 

    

k 
 

ȝcp 
 

 

         
0.8 

      
3                 

GATE-6. Ans. (c) h = 0.023 ( Re) ( Pr)3 = 0.023  

    

 

 

  

 

 

 

D 

   

k 

 

                  D ȝ   
  

      
Q2 

 v2 
0.8  

       

So h ∞ v 0.8   and Q ∞ h. Therefore =  = 20.8 = 1.74  
Q v 

 

      

  

 
 

      1 1  
 

  
 

IES-1. Ans. (d)         
 

IES-2. Ans. (b) Heat transfer by convection Q = hA t 
 

 

or 500 × (2 × 2) = 2 × 

{ 

× 2) 

 ( 

30 − 25 

) } 

or h = 50 W/m2 °C 

 

 h × (2 ×   
 

IES-3. Ans. (a) Convective Heat Loss will take place from the one side of the plate since it 

is written that air blows over the hot plate  

  Q = hA (T1 − T2 ) = 25 × ( 0.5 × 0.6)(220 − 20) = 25 × ( 0.3)(200) = 1500 W 



 

 

 
 
 

 

IES-4. Ans. (a) Characteristic length used in the correlation relates to the distance over 

which the boundary layer is allowed to grow. In the case of a vertical flat plate 

this will be x or L, in the case of a vertical cylinder this will also be x or L; in the 

case of a horizontal cylinder, the length will be d.  
For a vertical plate  
Vertical Distance ‘x’  

Grx  = 
β

 gυ2
Tx3 

 
 

Characteristic length 
 

(i) Horizontal plate = 

Surface Area 

Perimeter of the plate   

(ii) Horizontal Cylinder 

L = Outside diameter 
 

(iii) Vertical Cylinder  
L = height  

IES-5. Ans. (a) A free convection flow field is a self- sustained flow driven by the presence 

of a temperature gradient (as opposed to a forced convection flow where external 

means are used to provide the flow) . As a result of the temperature difference, 

the density field is not uniform also. Buoyancy will induce a flow current due to 

the gravitational field and the variation in the density field. In general, a free 

convection heat transfer is usually much smaller compared to a forced 

convection heat transfer.  
IES-6. Ans. (a) Both A and R are true, and R is correct explanation for A 

IES-7. Ans. (a) Reynolds Analogy: There is strong relationship between the dynamic 

boundary layer and the thermal boundary layer. Reynold’s noted the strong 

correlation and found that fluid friction and convection coefficient could be 

related.  
Conclusion from Reynold’s analogy: Knowing the frictional drag, we know 

the Nusselt number. If the drag coefficient is increased, say through increased 

wall roughness, then the convective coefficient will increase. If the wall friction 

is decreased, the convective co-efficient is decreased. For Turbulent Flow 
1 

following relation may be used Nux  = C ( Rex ) 0.8 ( Pr)3 .  
IES-8. Ans. (d)  
IES-9. Ans. (b) 

IES-10. Ans. (c) 

IES-11. Ans. (a) hl = Nu , or h= 
25×0.03

 =7.5W/m2K  
k 0.1 

IES-12. Ans. (b) 

IES-13. Ans. (c) 

IES-14. Ans. (c) 

IES-15. Ans. (c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

 

IES-16. Ans. (d) Laminar to Turbulent 

Transition: Just as for forced 

convection, a boundary layer 

will form for free convection. 

The insulating film will be 

relatively thin toward the 

leading edge of the surface 

resulting in a relatively high 

convection coefficient. At a 

Rayleigh number of about 109 

the flow over a flat plate will 

transition to a turbulent 
 

pattern. The increased 

turbulence inside the boundary 

layer will enhance heat transfer 

leading to relative high 

convection coefficients, much 

like forced convection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Ra < 109 Laminar flow [Vertical flat plate] 

Ra > 109 Turbulent flow [Vertical flat plate]   
IES-17. Ans. (b)  
IES-18. Ans. (d) 
 

IES-19. Ans. (c) Fully developed turbulent flow inside tubes (internal diameter D):  

Dittus-Boelter Equation: 
 

Nusselt number, Nu 
 h D 

= 0.023 Re 0.8 Prn 
 

 = c  
 

 

 

k 
   

 D     D  
 

    f    
 

where, n = 0.4 for heating (Tw > Tf) and n = 0.3 for cooling (Tw < Tf). 

IES-20. Ans. (d) 
Grashof number

 ; gives dimensionless number which signifies whether 

( Re)2 
 

flow is forced or free connection. 

Gr
 

 

Re2 
Gr 

Re2  >> 1; Natural convection 
 
IES-21. Ans. (b) 
 

IES-22. Ans. (d) 
 

IES-23. Ans. (a)  

IES-24. Ans. (b) For uniform heat flux: NuD = hDk = 4.36 
 

For uniform wall temperature: NuD = hDk = 3.66 
 

Dk = 0
1
.1 = 10 

  

IES-25. Ans. (a) 
 

IES-26. Ans. (b) For vertical pipe characteristic dimension is the length of the pipe. 

For laminar flow Nu = (Gr.Pr)1/4 



 

 

 

 

 h become independent of length       
 

  q1 = h1 A T   ⇒ 8 = L1  ⇒ L = 40cm    
 

               
 

  
q2 

 
h2 A T 

 
1 

  
L2 

   2     
 

               
 

IES-27. Ans. (d) Same height, both vertical and same fluid everything 
 

IES-28. Ans. (c) Nu2 =  t2  = 60     or Nu = 24    
 

            
 

     
Nu1 

t
1 160 

     2     
 

                
 

IES-29. Ans. (c)                    
 

IES-30. Ans. (b) Hereat x = 0, h = h , and at x = x , h = h   

 
 

               o      x 
x  

                          
 

  Average coefficient =  1  ∫x h dx = 2h     
 

   

x 

 

x 

   
 

                0 x     
  

2h  

Therefore ratio = x = 2  

h  

 

IES-31. Ans. (c) 
 

IES-32. Ans. (a) 
 

IES-33. Ans. (b) The correct matching for various dimensionless quantities is provided by 

code (b) 
 

IES-34. Ans. (a) 
 

IES-35. Ans. (a) It provides right matching 
 

IES-36. Ans. (b) If coefficient of friction is increased radiation will decrease. 

IES-37. Ans. (d) Q = (h1 A T + h2 A T + h3 A T ) 
 

Q = h  × 6 A T ; 䍈 h  = h1 + h2 + 4h3 
 

6 

 

av av 
 

  
  

IES-38. Ans. (b) 
 

IES-39. Ans. (b) 
 

IES-40. Ans. (d) Bulk-mean temperature = 
 

Total thermal energy crossing a sectionpipe in unit time 

Heat capacity offluid crossing same section in unit time 

 r     
 

 ∫o u( r )T (r )rdr  
2 

ro 
 

= 
0  

= ∫u( r )T (r )rdr 
 

 ro u r2 
 

  
um ∫ rdr 

 m o 0 
 

     
 

  0    
  

IES-41. Ans. (d) Bulk temperature 



 

 

 
 
 
 

Q = mc p (Tb 2 − Tb1 )  

dQ = mc p dTb = h {2π rdr ( Tw − Tb )} 
 

• The bulk temperature represents energy average or ‘mixing cup’ conditions.  
• The total energy ‘exchange’ in a tube flow can be expressed in terms of a bulk 

temperature difference. 
IES-42. Ans. (b) 

IES-43. Ans. (d) Grx = 

β
 
g

 2
Tx3 

 
υ 

 

 

 

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

 

 

                   UNIT -3(A) 

   Boiling and Condensation 
 

  
 

Boiling Heat Transfer 
 

Boiling: General considerations 

• Boiling is associated with transformation of liquid to 

vapor at a Solid/liquid interface due to convection heat 

transfer from the Solid. 
 

• Agitation of fluid by vapor bubbles provides for large 

Convection coefficients and hence large heat fluxes at  
low-to-moderate Surface-to-fluid temperature 

differences. 
 

• Special form of Newton’s law of cooling:   

q1
' = h(T1 − Tm ) = h T 

 

Where Tm is the saturation temperature of the liquid, and Te = T1 − Tm is the excess 

temperature. 
 

Boiling is a liquid-to-vapour phase change. 

 

Evaporation: occurs at the liquid – vapour interface when PV < Psat at a given T (No bubble 

formation). 
 

Note: A liquid-to-vapour phase changes is called evaporation if it occurs at a liquid – vapour 

interface and boiling if it occurs at a solid – liquid interface. 
 

Classification 
 

¾ Pool Boiling: Liquid motion is due to natural convection and bubble-induced mixing.  
¾ Forced Convection Boiling: Fluid motion is induced by external means, as well as by 

bubble-induced mixing.  
¾ Saturated Boiling: Liquid temperature is slightly larger than saturation temperature. 

 

¾ Sub cooled Boiling: Liquid temperature is less than saturation temperature. 
 

Boiling Regimes (The boiling curve) 
 

The boiling curve reveals range of conditions associated with saturated pool boiling on a  

qs" Vs Te  plot. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Free Convection Boiling ( Te < 5°C) 
 

¾ Little vapor formation.  
¾ Liquid motion is due principally to single-phase natural Convection. 
 

Onset of Nucleate Boiling – ONB ( Te ≈ 5°C) 
 

Nucleate boiling (5ºC < Te <30ºC) 
 

¾ Isolated Vapor Bubbles (5ºC <   Te <10ºC) Liquid motion is strongly influenced by  

nucleation of bubbles at the surface. h and q1
"  rise sharply with increasing Te . 

 

Heat transfer is principally due to contact of liquid with the surface (single-phase 

convection) and not to vaporization. 
 

¾ Jets and Columns (10ºC < Te <30ºC) Increasing number of nucleation sites causes 

bubble interactions and coalescence into jets and slugs. Liquid/surface contact is 
 

impaired. qs"   Continues to increase with Te while h begins to decrease. 

 

Critical Heat Flux – (CHF), (  Te ≈ 30ºC) 
 

¾ Maximum attainable heat flux in nucleate boiling. 



 

 

 
 
 
  

qmax
" ≈ 1MW/m2  For water at atmospheric pressure. 

 

Potential Burnout for Power-Controlled Heating 
 

¾ An increase in qs" beyond qmax" causes the surface to be blanketed by vapor and its 

temperature to spontaneously achieve a value that can exceed its melting point. 
 

¾ If the surface survives the temperature shock, conditions are characterized by film 

boiling. 

 

Film Boiling 
 

¾ Heat transfer is by conduction and radiation across the vapor blanket.  
¾ A reduction in qs" follows the cooling curve continuously to the Leidenfrost point 

corresponding to the minimum heat flux qmin" for film boiling. 
 

¾ A reduction in qs" below qmin" causes an abrupt reduction in surface temperature to 

the nucleate boiling regime. 

 

Transition Boiling for Temperature-Controlled Heating 
 

¾ Characterized by continuous decay of q1
"  (from qmax"  to  qmin"  ) with increasing  Te . 

 
¾ Surface conditions oscillate between nucleate and film boiling, but portion of surface 

experiencing film boiling increases with Te . 

¾ Also termed unstable or partial film boiling. 

 

Pool boiling correlations 
 

Nucleate Boiling  
¾ Rohsenow Correlation, clean surfaces only, ±100% errors 
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Condensation Heat Transfer 
 

Condensation: General considerations  
¾ Condensation occurs when the temperature of a vapour is reduced below its saturation 

temperature. 

¾ Condensation heat transfer  
Film condensation 

Drop wise condensation 

¾ Heat transfer rates in drop wise condensation may be as much as10 times higher than 

in film condensation 
 

Condensation heat transfer 

 

Film condensation Drop wise condensation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Laminar Film condensation on a vertical wall  
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 Where, L is the plate length. 
 

Total heat transfer: q = 

 

L A(Tsat − Tw ) 
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Drop wise condensation can be achieved by: 
 

ĺ Adding a promoting chemical into the vapour (Wax, fatty acid)  
ĺ Treating the surface with a promoter chemical.  
ĺ Coating the surface with a polymer (Teflon) or Nobel metal (Gold, Silver, and 

Platinum). 

 
 

Whenever a saturated vapor comes in contact with a surface at a lower temperature 

condensation occurs. 

 

• There are two modes of condensation. 
 

Film wise in which the condensation wets the surface forming a continuous film 

which covers the entire surface. 

 

Drop wise in which the vapor condenses into small droplets of various sizes 

which fall down the surface in a random fashion. 

 

Film wise condensation generally occurs on clean uncontaminated surfaces. 

In this type of condensation the film covering the entire surface grows in 

thickness as it moves down the surface by gravity. There exists a thermal 

gradient in the film and so it acts as a resistance to heat transfer. 

 

In drop wise condensation a large portion of the area of the plate is directly 

exposed to the vapour, making heat transfer rates much higher (5 to 10 times) 

than those in film wise condensation. 

 

• Although drop wise condensation would be preferred to film wise 

condensation yet it is. 

 

Extremely difficult to achieve or maintain. This is because most surfaces 
 

become "wetted" after being exposed to condensing vapours over a period of 



 

 

 
 

 
 

time. Drop wise condensation can be obtained under controlled conditions with 

the help of certain additives to the condensate and various surface coatings, but its 

commercial viability has not yet been proved. For this reason the condensing 

equipments in use are designed on the basis of film wise condensation. 



 

 

  
 

IES-1. Consider the following phenomena:   [IES-1997] 
 

 1. Boiling   2. Free convection in air 
 

 3. Forced convection  4. Conduction in air 
 

 Their correct sequence in increasing order of heat transfer coefficient 
 

 is:  

(b) 4, 1, 3, 2 (c) 4, 3, 2, 1 (d) 3, 4, 1, 2 

 

 (a) 4, 2, 3, 1 
 

IES-2. Consider  the  following  statements  regarding  condensation  heat 
 

 transfer:     [IES-1996] 
 

1. For a single tube, horizontal position is preferred over vertical 

position for better heat transfer. 

2. Heat transfer coefficient decreases if the vapour stream moves at 

high velocity.  
3. Condensation of steam on an oily surface is dropwise. 

4. Condensation of pure benzene vapour is always dropwise. 

Of these statements 

(a) 1 and 2 are correct (b) 2 and 4 are correct 

(c) 1 and 3 are correct (d) 3 and 4 are correct. 
 

IES-3. When all the conditions are identical, in the case of flow through pipes 

 with heat transfer, the velocity profiles will be identical for:  [IES-1997] 

 (a) Liquid heating and liquid cooling (b) Gas heating and gas cooling 

 (c) Liquid heating and gas cooling (d) Heating and cooling of any fluid 

IES-4. Drop wise condensation usually occurs on [IES-1992] 

 (a) Glazed surface  (b) Smooth surface (c) Oily surface (d) Coated surface 

IES-5. Consider the following statements regarding nucleate boiling: 

 1.  The temperature of the surface is greater than the saturation 

 temperature of the liquid.  [IES-1995] 

2. Bubbles are created by the expansion of entrapped gas or vapour at 

small cavities in the surface.  
3. The temperature is greater than that of film boiling. 

4. The heat transfer from the surface to the liquid is greater than that 

in film boiling. 

Of these correct statements are: 
 (a) 1, 2 and 4 (b) 1 and 3 (c) 1, 2 and 3 (d) 2, 3 and 4 

 From the above curve it is clear that the temperature in nucleate boiling is less 

 than that of film boiling. Statement 3 is wrong. Statement “4” The heat transfer 

 from the surface to the liquid is greater than that in film boiling is correct. 

IES-6. The burnout heat flux in the nucleate boiling regime is a function of 

 which of the following properties?  [IES-1993] 

 1.  Heat of evaporation 2.  Temperature difference 
 



 

 

 

 

3. Density of vapour 4. Density of liquid 

5. Vapour-liquid surface tension  

Select the correct answer using the codes given below: 

Codes: (a) 1, 2, 4 and 5 (b) 1, 2, 3 and 5 (c) 1, 3, 4 and 5  (d) 2, 3 and 4 
 
 

IES-7. The given figure shows a pool-boiling curve. Consider the following  
statements in this regard: [IES-1993] 

1. Onset of nucleation causes a  

 marked change in slope.  

2. At the point B, heat transfer  

 coefficient is the maximum.  

3. In an electrically heated wire  

 submerged in the liquid, film  

 heating is difficult to achieve.  

4. Beyond the point C, radiation  

 becomes significant  

Of these statements:  

(a) 1, 2 and 4 are correct (b) 1, 3 and 4 are correct 

(c) 2, 3 and 4 are correct (d) 1, 2 and 3 are correct  
 

IES-8. Assertion (A): If the heat fluxes in pool boiling over a horizontal surface 

is increased above the critical heat flux, the temperature difference  

between the surface and liquid decreases sharply. [IES-2003] 

Reason (R): With increasing heat flux beyond the value corresponding 

to the critical heat flux, a stage is reached when the rate of formation 

of bubbles is so high that they start to coalesce and blanket the surface 

with a vapour film.  
(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R are individually true but R is not the correct explanation of A  
(c) A is true but R is false  
(d) A is false but R is true 

 
 

IES-9.   In spite of large heat transfer coefficients in boiling liquids, fins are used 

advantageously when the entire surface is exposed to:  [IES-1994]  
(a) Nucleate boiling (b) Film boiling  
(c) Transition boiling (d) All modes of boiling 

 

IES-10. When a 

liquid flows through a tube with sub-cooled or saturated 
 

boiling, what is the process known? [IES-2009]  
(a) Pool boiling (b) Bulk boiling  
(c) Convection boiling (d) Forced convection boiling 

 

 
 

IES-11. For film- wise condensation on a vertical plane, the film thickness į 

and heat transfer coefficient h vary with distance x from the leading  

edge as [IES-2010] 
 



 

 

 
 

 

 (a) į decreases, h increases (b) Both į and h increase 

(c) į increases, h decreases (d) Both į and h decrease 

 

IES-12. Saturated steam is allowed to condense over a vertical flat surface and 

the condensate film flows down the surface. The local heat transfer 

coefficient for condensation [IES-1999] 

(a) Remains constant at all locations of the surface 

(b) Decreases with increasing distance from the top of the surface 

(c) Increases with increasing thickness of condensate film 

(d) Increases with decreasing temperature differential between the surface and 

vapour 
 

IES-13.  Consider the following statements: [IES-1998] 

1. If a condensing liquid does not wet a surface drop wise, then 

condensation will take place on it. 

2. Drop wise condensation gives a higher heat transfer rate than film-

wise condensation.  
3. Reynolds number of condensing liquid is based on its mass flow 

rate. 

4. Suitable coating or vapour additive is used to promote film-wise 

condensation. 

Of these statements:  
(a) 1 and 2 are correct (b) 2, 3 and 4 are correct  
(c) 4 alone is correct (d) 1, 2 and 3 are correct 

 

IES-14.  Assertion (A): Even though dropwise condensation is more efficient, 

surface  condensers  are  designed  on  the  assumption  of  film  wise  
condensation as a matter of practice. [IES-1995] Reason (R): Dropwise 

condensation can be maintained with the use of promoters like oleic 

acid.  
(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R are individually true but R is not the correct explanation of A  
(c) A is true but R is false  
(d) A is false but R is true 

 

IES-15.  Assertion (A): Drop-wise condensation is associated with higher heat 

transfer  rate  as  compared  to  the  heat  transfer  rate  in  film 

condensation. [IES-2009] Reason (R): In drop condensation there is free 

surface through which direct heat transfer takes place. 

 

(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R individually true but R in not the correct explanation of A  
(c) A is true but R is false  
(d) A is false but R is true 

 

IES-16. Assertion (A): The rate of condensation over a rusty surface is less than 
 

that over a polished surface. [IES-1993] 

Reason (R): The polished surface promotes drop wise condensation 

which does not wet the surface. 
 

(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R are individually true but R is not the correct explanation of A 



 

 

 
 
 
 
  

(c) A is true but R is false  
(d) A is false but R is true 

 

IES-17.  Consider the following statements: [IES-1997] 

The effect of fouling in a water-cooled steam condenser is that it  

1. Reduces the heat transfer coefficient of water.  
2. Reduces the overall heat transfer coefficient.  
3. Reduces the area available for heat transfer.  
4. Increases the pressure drop of water 

 

Of these statements: 
 

(a) 1, 2 and 4 are correct (b) 2, 3 and 4 are correct  

(c) 2 and 4 are correct (d) 1 and 3 are correct 



 

 

 
 

IES-1. Ans. (a) Air being insulator, heat transfer by conduction is least. Next is free 

convection, followed by forced convection. Boiling has maximum heat transfer 
 

IES-2. Ans. (c) 
 

IES-3. Ans. (a) The velocity profile for flow through pipes with heat transfer is identical 

for liquid heating and liquid cooling. 
 

IES-4. Ans. (c) 
 

IES-5. Ans. (a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

IES-6. Ans. (c) q sc = 0.18 ( ρ v )1 2 hfg [gı ( ρ l − 

ρv )]14 IES-7. Ans. (c) 
 

IES-8. Ans. (d) The temperature difference between the surface and liquid increases 

sharply. 
 

IES-9. Ans. (b) 
 

IES-10. Ans. (d) Pool Boiling: Liquid motion is due to natural convection and bubble-

induced mixing. 
 

Forced Convection Boiling: Fluid motion is induced by external means, as 

well as by bubble-induced mixing. 

Saturated Boiling: Liquid temperature is slightly larger than saturation 

temperature. 

Sub-cooled Boiling: Liquid temperature is less than saturation temperature. 
 

Bulk Boiling: As system temperature increase or system pressure drops, the 

bulk fluid can reach saturation conditions. At this point, the bubbles entering 

the coolant channel will not collapse. The bubbles will tend to join together and 

form bigger steam bubbles. This phenomenon is referred to as bulk boiling bulk. 



 

 

 
 

 

Boiling can provide adequate heat transfer provide that the system bubbles are 

carried away from the heat transfer surface and the surface continually wetted 

with liquids water. When this cannot occur film boiling results. So the answer 

must not be Bulk boiling. 
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IES-11. Ans. (c) į ( x ) = 1 satw 1 
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IES-12. Ans. (b) hx α x
−1

4  

  
1 

∴h ( x ) ∝ 
1

 4 x 

 

IES-13. Ans. (d) 1. If a condensing liquid does not wet a surface drop wise, then drop-wise 

condensation will take place on it. 
 

4. Suitable coating or vapour additive is used to promote drop-wise 

condensation. 

IES-14. Ans. (b) A and R are true. R is not correct reason for A. 
 
IES-15. Ans. (a) 
 
IES-16. Ans. (a) Both A and R are true and R provides satisfactory explanation for A.  

IES-17. Ans. (b) The pipe surface gets coated with deposited impurities and scale gets 
 

formed due the chemical reaction between pipe material and the fluids. This 

coating has very low thermal conductivity and hence results in high thermal 

resistance. Pressure will be affected. 



 

 

UNIT-3(B) 

Heat Exchangers 
 

 

 

Rules to remember: 
 

(i) If two temperatures is known, use NTU Method.  
(ii) If three temperatures is known, use simple heat balance method.  

(iii) If four temperatures is known, then you have to calculate 
Cmin 
C

max  
(iv) Cp & Cv must be in J/kg k not in kJ/Kgk. 

 

What are heat exchangers for? 
 

฀ Heat exchangers are practical devices used to transfer energy from one fluid to 

another.  

฀ To get fluid streams to the right temperature for the next process– Reactions 

often require feeds at high temperature. 

฀ To condense vapours. 
 

฀ To evaporate liquids. 
 

฀ To recover heat to use elsewhere. 
 

฀ To reject low-grade heat. 
 

฀ To drive a power cycle. 

 

Types of Heat Exchangers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

฀ Most heat exchangers have two streams, hot and cold, but 

Some have more than two 



 

 

 
 

 
 

฀ Recuperative:  
Has separate flow paths for each fluid which flow simultaneously through the 

Exchanger transferring heat between the streams. 

฀ Regenerative: 
 

Has a single flow path which the hot and cold fluids alternately pass through.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Compactness 
 

฀ Can be measured by the heat-transfer area per unit volume or by channel size.  

฀ Conventional exchangers (shell and tube) have 

channel Size of 10 to 30 mm giving about 100m2/m3. 

฀ Plate-type exchangers have typically 5mm channel size with more than 

200m2/m3 

฀ More compact types available. 
 

 

Double Pipe Heat Exchanger 
 

฀ Simplest type has one tube inside another - inner tube may have longitudinal 

fins on the outside  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

  
 
 
 
 
 
 
 
 
 

 

฀ However, most have a number of tubes in the outer tube - can have many 

tubes thus becoming a shell-and-tube. 

 

Shell and Tube Heat Exchanger 
 

฀ Typical shell and tube exchanger as used in the process industry  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Shell-Side Flow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



 

 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

฀ Made up of flat plates (parting sheets) and corrugated sheets which form fins  

฀ Brazed by heating in vacuum furnace. 
 

Configurations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fouling: 
 

• Scaling: Mainly CaCo3 salt deposition.  
• Corrosion fouling:  Adherent oxide coatings.  
• Chemical reaction fouling: Involves chemical reactions in the process 

stream which results in deposition of material on the exchanger tubes. When 

food products are involved this may be termed scorching but a wide range of 

organic materials are subject to similar problems.  
• Freezing fouling: In refineries paraffin frequently solidifies from petroleum 

products. 



 

 

 
 
 
 

  
• Biological fouling: It is common where untreated water is used as a coolant 

stream. Problem range or other microbes to barnacles. 

• Particulate fouling: Brownian sized particles 
 
 
 

Basic Flow Arrangement in Tube in Tube Flow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Flow Arrangement Condenser and Evaporator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Temperature ratio, (P ): It is defined as the ratio of the rise in temperature 
of the cold fluid to the difference in the inlet temperatures of the two fluids. Thus: 

Temperature ratio,( P ) = 
tc

2  
−

 
tc

1 
 

t
h1  

−
 

t
c1 

Where subscripts h and c denote the hot and cold fluids respectively, and the subscripts 1 

and 2 refer to the inlet and outlet conditions respectively. 



 

 

 
 
 
 
 

 
 

The temperature ratio, (P) indicates cooling or heating effectiveness and it can vary from 

zero for a constant temperature of one of the fluids to unity for the case when inlet 

temperature of the hot fluid equals the outlet temperature of the cold fluid. 

 

Capacity ratio, (R): The ratio of the products of the mass flow rate times the heat capacity of the 

fluids is termed as capacity ratio R. Thus 
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Effectiveness, 䌜  = actual heat transfer = Q 
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or Q = 䌜 Cmin (th1 − tc1 ) 

 
 
 
 

Logarithmic Mean Temperature Difference (LMTD) 
 

Assumptions:  
1. The heat exchanger is insulated from its surroundings, in which case the only heat 

exchanger is between the hot and cold fluids. 

2. Axial conduction along the tubes is negligible  
3. Potential and kinetic energy changes are negligible.  
4. The fluid specific heats are constant.  
5. The overall heat transfer co-efficient is constant.  

LMTD for parallel flow: 
 

Applying energy balance 



 

 

 
 
 
 
 
 

 

Heat Exchangers 
 

   

dq = − mhC ph dTh = − Ch 

dTh dq = mc C pc dTc = Cc 

dTc dq = U × dT × dA 
 

θ = Th − Tc 
 

or d(ș ) = dTh − dTc 
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Substituting equation                         
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LMTD for parallel flow 
 

 

Ch and Cc are the hot and cold fluid heat capacity 

rates, respectively 

 

or q = UA (LMTD) 

now

 L

MTD = 
ș

2 
−
 
ș

1 
 ș

 
ln 2 

ș1 

LMTD = 
(ș

1 
)

 

−
 
(ș

2 
)
 

 ș
 

ln ș1  
 
 
 
 

 

 



 

 

LMTD for counter flow: 
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• For evaporators and condensers, for the given conditions, the logarithmic 

mean temperature difference (LMTD) for parallel flow is equal to that for 

counter flow. 
 

Overall Heat Transfer Coefficient, (U) 
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Heat Exchanger Effectiveness and Number of 

Transfer Units (NTU) 
 

How will existing Heat Exchanger 

perform for given inlet conditions? 
 
 

Define effectiveness: 
 

i 

İ = 
Q

iactual  
Q

max  

Where 

i 

is for an infinitely 

 Q
max 

 

long heat exchanger  
 

One fluid T ĺ 

T
max 

=
 

T
h ,in 

−T
c , in 

 

AND SINCE    
 

• 
•
  

•
  

 Q
 
=

  
mc

 A
T

A 
=
 
mc

 B     
T

B 
 

     
 

= C A  TA  = C B  TB 
 

Then only the fluid with lesser of CA, CB heat capacity rate 

can have Tmax 
 
 
 
 
 
 
 
 
 
 

 

Therefore 
 

Effectiveness, 䌜 = 

  actual heat transfer 
 

maximum possible heat transfer 
 

=  Ch (th1 − hh 2 ) = Cc (tc 2 − tc1 )  
 

  C (t − t )  C 
 

  min h1 c1   min 
 

 

or Q = 䌜 Cmin (th1 − tc1 ) 

 
 
 
 
 
 
 
 
 
 
 
 

 

= 
Q

 

Q
max 

 

 



 

 

 
 
 
 

The  'NTU'  (Number  of Transfer  Units)  in  a  heat  exchanger  is  given  by, 
 

NTU = 
UA

 

C
min 

 

Where:  

U = Overall heat transfer 

coefficient 

C = Heat capacity 

ε = Effectiveness 

A  =  Heat exchange area. 
 
 

For parallel flow NTU method  
 
 
 
 

or 
 
 

 

Hence, 

  
 

   
1 

  
 1 

   
 

d ( th − tc )= − dQ + 
 

 

 
 

c  c  
 

  

 

   

 

 
 

d ( th − tc ) 
h    c  

 

 1   1  
 

  

= − UdA 
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( t − t ) c c  
 

h c   h    c  
  

th 2  = th1 − 

İ
 
c

min ( 
t

h1 

−
 
t

c1 ) 
 

c
h 

tc 2 = tc1 + 

İ
 
c

min ( 
t

h1 

−
 
t

c1 )  

Cc  
      C

min   
 

    − NTU 1+  
 

 

        

 1 − e  C
max  

 

and get  İ = 
         

 

  
1 + 

C
min 

    
 

       
 

     C      
 

     max  
 

İ = 
1 − e− NTU (1+R) 

( parallel flow) 
 

1 + R 
 

        
 

For Counter flows NTU method 
Parallel Flow 

 

 
 

Similarly 

1 − e− NTU (1 −R) 

 
 

 

İ = 

 

( counter flow) 

 

 1 − R e− NTU (1 −R) 
 

Case-I: when R  0 , condenser and evaporator (boilers)  

䌜 = 1 - e-NTU
 For parallel and counter flow. 



 

 

 
 
 
 
 
 
 
 
 

 

        C
min                

 

   − NTU 1+                
 

䌜 = 1− e     
C

max   = 1 − e−
 
NTU

  For Parallerl flow [As boiler and condenser   
C

min ĺ 0]  

    C
min 

    
 

                  

 

C
max 

 

   
1+

 Cmax 
           

 

                 
 

                     
 

     − NTU 1+ C
min         

 

= 
 1− e   

C
max 

= 1 − e− NTU For Counter flow 
   

 

  

C 
          C 

min     
 

      

− NTU 1+ 
 

 

       
 

 

1+ 
min 

e 
C         

 

     

 

    

max 
       

 

 

C
max 

              
 

                       
 

Case-II:    R = 1          
 

       䌜 = 
1 − e−2NTU 

for gas turbine ( parallel flow) 
 

              

2 
  

 

                         
 

       
= 

     NTU  
for gas turbine  ( counter flow) 

 

       

1 + NTU 

 

                
 

 
 

 

Heat Pipe 
 

Heat pipe is device used to obtain very high rates of heat flow. In practice, the thermal 

conductance of heat pipe may be several hindered (500) times then that best available 

metal conductor; hence they act as super conductor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

  

HEAT EXCHANGER (Formula List) 
 

( i ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(iii ) 
 

(iv ) 
 

(v ) 
 

(vi ) 

 

(vii) 
 

 

( ix ) 

  

LMTD = 
θ

1
 
−

θ
θ

2
 ; if θ1 = θ 2 , then LMTD = θ1 = θ2 
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Q = UA ( LMTD) 
 

Q = Heat transfer = mh Cph ( Th1 − Th2 ) = m c Cpc ( Tc 2 − Tc1 ) 
 

mCp  = C 
 

Effectiveness,(䌜) = 
Actual heat transfer 

= 
Ch (Th1 − Th2 ) 

= 
C c ( Tc 2 − Tc1 ) 

 

maxmimum possible heat transfer 
C

min ( 

T
h1 − Tc1 ) 

C
min ( 

T
h1 − Tc1 ) 

 

   
  

Number of transfer unit, ( NTU) = UA ; It is indicative of the size of the heat exchanger.  

 
 

                   C 
 

                   min 
 

   − NTU 1+ 
C

min          
 

    

 

        

 

1 − e 
   C

max 
       

 

ෛ = 
        

for parallel flow  

               
 

  1+ C                

    
C

min            
 

      max           
 

           C       
 

     − NTU 1 −    min      
 

= 
 1 − e       

C
max  

for counter flow 
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          C  
 

      − NTU 1 − min    
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If NTU Ĺ  then ෛĹ 

if 
C

min  Ĺ then ෛĻ 
 

C
max 

 

( x)  ෛ = 1− e−NTU
  for Boiler and condenser parallel or counter flow as Cmin / Cmax ĺ 0 

 

 1  −2NTU     
 

= 
  

(1− e 
   

) parallel flow 
  

 

2    / C
max = 1 

 

   
NTU 

    for gas turbine heat exchanger where. Cmin 
 

=     counter flow    
 

1 + NTU 

   
 

      
 

 

(xi) Edwards air pump removes air along with vapour and also the condensed water from 

condenser. 



 

 

 
 
 
 
 

 

 (xii)  Vacuum Efficiency = 

Actual vacuum at steam inlet to condenser  
 

( Barometric pressure – Absolute pressure)  
 

 

= Actual vacuum in condenser with air present  
Theoritical vacuum in condenser with no air present 

 
(xiii) For same inlet and outlet temperature of the hot is cold fluid LMTD is greater for 

counter flow heat exchanger then parallel flow heat exchanger. 
 

Condenser efficiency is defined as =   

Temperature rise in the cooling water 
 

Saturation temperature correspond to condenser pressure – cooling water inlet temperature  



 

 

 
GATE-1. In a counter flow heat exchanger, for the hot fluid the heat capacity = 2 

kJ/kg K, mass flow rate = 5 kg/s, inlet temperature = 150°C, outlet 

temperature = 100°C. For the cold fluid, heat capacity = 4 kJ/kg K, mass 

flow rate = 10 kg/s, inlet temperature = 20°C. Neglecting heat transfer to 

the surroundings, the outlet temperature of the cold fluid in °C is:  
[GATE-2003]  

(a) 7.5 (b) 32.5 (c) 45.5 (d) 70.0 

 

Logarithmic Mean Temperature Difference (LMTD) 
 

GATE-2. In a condenser, water enters at 30°C and flows at the rate 1500 kg/hr. 

The condensing steam is at a temperature of 120°C and cooling water 

leaves the condenser at 80°C. Specific heat of water is 4.187 kJ/kg K. If 

the overall heat transfer coefficient is 2000 W/m2K, then heat transfer 

area is:   [GATE-2004] 

(a) 0.707 m2 (b) 7.07 m2 (c) 70.7 m2 (d) 141.4 m2 

 

GATE-3. The logarithmic mean temperature difference (LMTD) of a counterflow 

 heat exchanger is 20°C. The cold fluid enters at 20°C and the hot fluid 

 enters at 100°C. Mass fl0w rate of the cold fluid is twice that of the hot 

 fluid. Specific heat at constant pressure of the hot fluid is twice that of 

 the cold fluid. The exit temperature of the cold fluid [GATE-2008] 

 (a) is 40°C (b) is 60°C (c) is 80°C (d) Cannot be determined 

GATE-4. In a counter flow heat exchanger, hot fluid enters at 60°C and cold fluid 

 leaves at 30°C. Mass flow rate of the hot fluid is 1 kg/s and that of the 

 cold fluid is 2 kg/s. Specific heat of the hot fluid is 10 kJ/kgK and that of 

 the cold fluid is 5 kJ/kgK. The Log Mean Temperature Difference 

 (LMTD) for the heat exchanger in °C is:  [GATE-2007] 

 (a) 15 (b) 30 (c) 35  (d) 45 

GATE-5. Hot oil is cooled from 80 to 50°C in an oil cooler which uses air as the 

 coolant. The air temperature rises from 30 to 40°C. The designer uses a 

 LMTD value of 26°C. The type of heat exchanger is: [GATE-2005] 

 (a) Parallel flow (b) Double pipe (c) Counter flow (d) Cross flow 

GATE-6. For the same inlet and outlet temperatures of hot and cold fluids, the 

 Log Mean Temperature Difference (LMTD) is:  [GATE-2002] 

(a) Greater for parallel flow heat exchanger than for counter flow heat 

exchanger. 
 
 
 
 
 

  



 

 

  
(b) Greater for counter flow heat exchanger than for parallel flow heat 

exchanger.  
(c) Same for both parallel and counter flow heat exchangers. 

(d) Dependent on the properties of the fluids. 
 

GATE-7. Air enters a counter flow heat exchanger at 70°C and leaves at 40°C.  
Water enters at 30°C and leaves at 50°C. The LMTD in degree C is: 

[GATE-2000] 

(a) 5.65 (b) 4.43 (c) 19.52 (d) 20.17 
  

GATE-8. In a certain heat exchanger, both the fluids have identical mass flow 

rate-specific heat product. The hot fluid enters at 76°C and leaves at 

47°C and the cold fluid entering at 26°C leaves at 55°C. The  
effectiveness of the heat exchanger is: [GATE-1997] 

 

GATE-9. In a parallel flow heat exchanger operating under steady state, the heat 

capacity rates (product of specific heat at constant pressure and mass 

flow rate) of the hot and cold fluid are equal. The hot fluid, flowing at 1 

kg/s with Cp = 4 kJ/kgK, enters the heat exchanger at 102°C while the 

cold fluid has an inlet temperature of 15°C. The overall heat transfer 

coefficient for the heat exchanger is estimated to be 1 kW/m2K and the 

corresponding heat transfer surface area is 5 m2. Neglect heat transfer 

between the heat exchanger and the ambient. The heat exchanger is 

characterized by the following relation: 2İ = 1 – exp  
(–2NTU). [GATE-2009] 

The exit temperature (in °C) for - the cold fluid is: 

(a) 45 (b) 55 (c) 65 (d) 75  
IES-1. Air can be best heated by steam in a heat exchanger of [IES-2006] 

 

 (a) Plate type (b) Double  pipe  type  with  fins  on 
 

  steam side  
 

 (c) Double pipe type with fins on air side (d) Shell and tube type  
 

IES-2. Which one of the following heat exchangers gives parallel straight line 
 

 pattern of temperature distribution for both cold and hot fluid? 
 

 (a) Parallel-flow with unequal heat capacities [IES-2001] 
 

 (b) Counter-flow with equal heat capacities  
 

 (c) Parallel-flow with equal heat capacities  
 

 (d) Counter-flow with unequal heat capacities  
 

IES-3. For a balanced counter-flow heat exchanger, the temperature profiles 
 

 of the two fluids are: 

(b) Parallel and linear 

[IES-2010] 
 

 (a) Parallel and non-linear  
 

 (c) Linear but non-parallel (d) Divergent from one another 
 

 



 

 

 
 
 

  
IES-4. Match List-I (Heat exchanger process) with List-II (Temperature area  

diagram) and select the correct answer: [IES-2004] List-I  
 

A. Counter flow sensible heating 
 
 
 
 

 

B. Parallel flow sensible heating 
 
 
 
 
 
 

 

C. Evaporating 
 
 
 
 
 

 

D. Condensing  
 
 
 
 
 

 

 Codes: A B C D  A B C D 
 

 (a) 3 4 1 2 (b) 3 2 5 1 
 

 (c) 4 3 2 5 (d) 4 2 1 5 
 

IES-5. The temperature distribution      
 

 curve for a heat exchanger as      
 

 shown  in  the  figure  above      
 

 (with usual notations) refers      
 

 to which one of the following?      
 

 (a) Tubular parallel flow heat      
 

 exchanger        
 

 (b) Tube  in  tube  counter  flow      
 

 heat exchanger        
 

 (c) Boiler          
 

 (d) Condenser       

[IES-2008] 

 

          
 

IES-6. Consider the following statements:     [IES-1997] 
  

The flow configuration in a heat exchanger, whether counterflow or 

otherwise, will NOT matter if: 

1. A liquid is evaporating 

2. A vapour is condensing 

3. Mass flow rate of one of the fluids is far greater 

Of these statements: 

(a) 1 and 2 are correct (b) 1 and 3 are correct 



 

 

 (c) 2 and 3 are correct (d) 1, 2 and 3 are correct 
 

 

IES-7. Which one of the following diagrams correctly shows the temperature 

distribution for a gas-to-gas counterflow heat exchanger? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

           [IES-1994; 1997] 
 

IES-8. Match List-I with List-II and select the correct answer using the codes 
 

 given below the lists:        [IES-1995] 
 

 List-I        List-II   
 

 A. Regenerative heat exchanger   1. Water cooling tower 
 

 B. Direct contact heat exchanger   2. Lungstrom air heater 
 

 C. Conduction through a cylindrical wall  3. Hyperbolic curve 
 

 D. Conduction through a spherical wall  4. Logarithmic curve 
 

 Codes: A B C D 

(b) 

 A B C D 
 

 (a) 1 4 2 3  3 1 4 2 
 

 (c) 2 1 3 4 (d)  2 1 4 3 
 

IES-9. Match List-I (Application) with List-II (Type of heat exchanger) and 
 

 select the correct answer using the code given below the lists:[IES-2008] 
 

 List-I       List-II   
 

 A. Gas to liquid     1. Compact   
 

 B. Space vehicle     2. Shell and Tube  
 

 C. Condenser     3. Finned tube   
 

 D. Air pre-heater    4. Regenerative   
 

 Codes: A B C D   A B C D 
 

 (a) 2 4 3 1 (b)  3 1 2 4 
 

 (c) 2 1 3 4 (d)  3 4 2 1 
 

IES-10. Match List-I with List-II and select the correct answer [IES-1994] 
 

 List-I       List-II   
 

 A. Number of transfer units   1. Recuperative type heat exchanger 
 

 B. Periodic flow heat exchanger  2. Regenerator type heat exchanger 
 

 C. Chemical additive    3. A measure of the heat exchanger 
 

        size   
 

D. Deposition on heat exchanger surface 4.  Prolongs drop-wise condensation  
5.  Fouling factor 

Codes: A B C D A B C D 

(a) 3 2 5 4 (b) 2 1 4 5 



 

 

 (c)3245(d)31 54 

IES-11.  Consider the following statements: [IES-1994] 

In a shell and tube heat exchanger, baffles are provided on the shell 

side to: 

1. Prevent the stagnation of shell side fluid 

2. Improve heat transfer 

3. Provide support for tubes 

Select the correct answer using the codes given below: 

(a) 1, 2, 3 and 4 (b) 1, 2 and 3 (c) 1 and 2 (d) 2 and 3 

 

IES-12.  In a heat exchanger, the hot liquid enters with a temperature of 180ºC 

and leaves at 160ºC. The cooling fluid enters at 30ºC and leaves at 

110ºC. The capacity ratio of the heat exchanger is: [IES-2010] 

(a) 0.25 (b) 0.40 (c) 0.50 (d) 0.55 
 

 
 

IES-13. Assertion (A): It is not possible to determine LMTD in a counter flow 

heat exchanger with equal heat capacity rates of hot and cold fluids. 

Reason (R): Because the temperature difference is invariant along the 

length of the heat exchanger. [IES-2002] 

(a) Both A and R are individually true and R is the correct explanation of A 

(b) Both A and R are individually true but R is not the correct explanation of A 

(c) A is true but R is false 

(d) A is false but R is true 
 

IES-14. Assertion (A): A counter flow heat exchanger is thermodynamically  
more efficient than the parallel flow type. [IES-2003] Reason (R): A 

counter flow heat exchanger has a lower LMTD for the same 

temperature conditions.  
(a) Both A and R are individually true and R is the correct explanation of A 

(b) Both A and R are individually true but R is not the correct explanation of A 

(c) A is true but R is false 

(d) A is false but R is true 
 

IES-15. In a counter-flow heat exchanger, the hot fluid is cooled from 110°C to 

 80°C by a cold fluid which gets heated from 30°C to 60°C. LMTD for the 

 heat exchanger is:  [IES-2001] 

 (a) 20°C (b) 30°C (c) 50°C (d) 80°C 

IES-16. Assertion (A): The LMTD for counter flow is larger than that of parallel 

 flow for a given temperature of inlet and outlet. [IES-1998] 

Reason (R): The definition of LMTD is the same for both counter flow 

and parallel flow. 

(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R are individually true but R is not the correct explanation of A  
(c) A is true but R is false  
(d) A is false but R is true 

 

IES-17.  A counter flow heat exchanger is used to heat water from 20°C to 80°C by 

using hot exhaust gas entering at 140°C and leaving at 80oC. The log 

mean temperature difference for the heat exchanger is: [IES-1996] 
 



 

 

 (a) 80°C (b) 60°C 
 

(c) 110°C (d) Not determinable as zero/zero is involved 
 

 

IES-18. For evaporators and condensers, for the given conditions, the 

logarithmic mean temperature difference (LMTD) for parallel flow is: 
 

(a) Equal to that for counter flow [IES-1993] 

(b) Greater than that for counter flow  
(c) Smaller than that for counter flow  
(d) Very much smaller than that for counter flow 

 

IES-19. In a counter flow heat exchanger, cold fluid enters at 30°C and leaves at 

50°C, whereas the enters at 150°C and leaves at l30°C. The mean 

temperature difference for this case is: [IES-1994] 

(a) Indeterminate (b) 20°C (c) 80°C (d) 100°C 

 

IES-20. A designer chooses the values of fluid flow ranges and specific heats in 

such a manner that the heat capacities of the two fluids are equal. A 

hot fluid enters the counter flow heat exchanger at 100°C and leaves at 

60°C. The cold fluid enters the heat exchanger at 40°C. The mean  
temperature difference between the two fluids is: [IES-1993]  

(a) (100 +60 + 40)/3°C (b) 60°C (c) 40°C (d) 20°C 

 
 

IES-21.  Given the following data, [IES-1993] 

Inside heat transfer coefficient = 25 W/m2K  

Outside heat transfer coefficient = 25 W/m2K  
Thermal conductivity of bricks (15 cm thick) = 0.15 W/mK,  
The overall heat transfer coefficient (in W/m2K) will be closer to the  
(a) Inverse of heat transfer coefficient  
(b) Heat transfer coefficient  
(c) Thermal conductivity of bricks  
(d) Heat transfer coefficient based on the thermal conductivity of the bricks 

alone 
  

IES-22. The 'NTU' (Number of Transfer Units) in a heat exchanger is given by  

which one of the following? [IES-2008]  

(a) 
UA 

(b) 
UA 

 

C C  

  
 

 min  max 
 

U = Overall heat transfer 

coefficient E = Effectiveness 

  

(c) 
UA 

(d) 
C

max 
 

 E C 
 

    min 
  

C = Heat capacity 
 

A = Heat exchange area 

 

IES-23. When tc1 and tc2 are the temperatures of cold fluid at entry and exit 

respectively and th1 and th2 are the temperatures of hot fluid at entry 

and exit point, and cold fluid has lower heat capacity rate as compared 

to hot fluid, then effectiveness of the heat exchanger is given by: 



 

 

 

             [IES-1992] 
 

(a) 
t

c1 

−
 
t

c2  (b) 
t

h 2 − th1 (c) 
t

h1 

−
 
t

h2  (d) 
t

c 2 − tc1  
 

 

t − t 
 

t − t 
 

 t − t   t − t  
 

 h1 c1  c 2 h1  h 2 c1  h1 c1 
 

 

IES-24. In a parallel flow gas turbine recuperator, the maximum effectiveness 

 is:   [IES-1992] 

 (a) 100% (b) 75% (c) 50% (b) Between 25% and 45% 

IES-25. In a heat exchanger with one fluid evaporating or condensing the 

 surface area required is least in  [IES-1992] 

 (a) Parallel flow  (b) Counter flow 

 (c) Cross flow  (d) Same in all above 

IES-26. The equation of effectiveness İ = 1 − e
−
 NTU for a heat exchanger is valid 

 in the case of:   [IES-2006] 

(a) Boiler and condenser for parallel now  
(b) Boiler and condenser for counter flow  
(c) Boiler and condenser for both parallel flow and counter flow  
(d) Gas turbine for both parallel now and counter flow 

 

IES-27. The equation of effectiveness İ = 1 − e
−
 NTU  of a heat exchanger is valid  

(NTU is number or transfer units) in the case of: [IES-2000] 

(a) Boiler and condenser for parallel flow  
(b) Boiler and condenser for counter flow  
(c) Boiler and condenser for both parallel flow and counter flow  
(d) Gas turbine for both parallel flow and counter flow 

 

IES-28. After expansion from a gas turbine, the hot exhaust gases are used to 

heat the compressed air from a compressor with the help of a cross 

flow compact heat exchanger of 0.8 effectiveness. What is the number 

of transfer units of the heat exchanger? [IES-2005] 

(a) 2 (b) 4 (c) 8 (d) 16  

IES-29. In a balanced counter flow heat exchanger with MhC h = M cCc , the NTU 
 

is equal to 1.0. What is the effectiveness of the heat exchanger? [IES-

2009] 

(a) 0.5 (b) 1.5 (c) 0.33 (d) 0.2 

 

IES-30.  In a counter flow heat exchanger, the product of specific heat and mass 

flow rate is same for the hot and cold fluids. If NTU is equal to 0.5, then 

the effectiveness of the heat exchanger is: [IES-2001] 

(a) 1.0 (b) 0.5 (c) 0.33 (d) 0.2 
 

IES-31. Match List-I with List-II and select the correct answer using the codes 

given below the Lists (Notations have their usual meanings): [IES-2000] 

List-I  List-II 
 

A. Fin 1. 
 UA  

 

 C  

   
 

   min 
 

B. Heat exchanger 2. 

 x 
 

 2 αĲ  
  



 

 

 
 

C. Transient conduction 
 

3. 
 hp     

 

  kA 
   

 

          
 

D. Heisler chart    4. hl / k    
 

Codes: A B C D 

(b) 
A B C D 

 

(a) 3 1 2 4 2   1 3 4 
 

(c) 3 4 2 1 (d) 2   4 3 1 
  

 

IES-32. A cross-flow type air-heater has an area of 50 m2. The overall heat 

transfer coefficient is 100 W/m2K and heat capacity of both hot and cold 

stream is 1000 W/K. The value of NTU is: [IES-1999] 

(a) 1000 (b) 500 (c) 5 (d) 0.2 
 

IES-33. A counter flow shell - and - tube exchanger is used to heat water with 

hot exhaust gases. The water (Cp = 4180 J/kg°C) flows at a rate of 2 kg/s 

while the exhaust gas (1030 J/kg°C) flows at the rate of 5.25 kg/s. If the 

heat transfer surface area is 32.5 m2 and the overall heat transfer 

coefficient is 200 W/m2°C, what is the NTU for the heat exchanger? 

[IES-1995] 

(a) 1.2 (b) 2.4 (c) 4.5 (d) 8.6 
 

IES-34. A heat exchanger with heat transfer surface area A and overall heat 
 

 transfer coefficient U handles two fluids of heat capacities C1, and C2, 
 

 such that C1 > C2. The NTU of the heat exchanger is given by: [IES-1996] 
 

 
(a) AU / C2 (b) e 

{ AU / C2 } (c) e 
{ AU / C1 } (d) AU / C1  

    
 

IES-35. A heat exchanger with heat transfer surface area A and overall heat 
 

 transfer co-efficient U handles two fluids of heat capacities Cmax and 
 

 Cmin. The parameter NTU (number of transfer units) used in the 
 

 analysis of heat exchanger is specified as   [IES-1993] 
 

 
(a) 

AC
min  

(b) 
  U  

(c) UACmin (d) 
UA  

 

 

U 
 AC

min 
C

min 
 

       
 

IES-36. İ -NTU  method  is  particularly  useful  in  thermal  design  of  heat 
 

 exchangers when         [IES-1993] 
 

(a) The outlet temperature of the fluid streams is not known as a priori  
(b) Outlet temperature of the fluid streams is known as a priori  
(c) The outlet temperature of the hot fluid streams is known but that of the cold 

fluid streams is not known as a priori 

(d) Inlet temperatures of the fluid streams are known as a priori 

 
 

IES-37. Heat pipe is widely used now-a-days because [IES-1995] 
 

(a) It acts as an insulator (b) It acts as conductor and insulator  

(c) It acts as a superconductor (d) It acts as a fin 
 

IES-38.  Assertion (A): Thermal conductance of heat pipe is several hundred 

times  that  of  the  best  available  metal  conductor  under  identical 
 

conditions. [IES-2000] Reason (R): The value of latent heat is far greater 

than that of specific heat. 



 

 

 
  

(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R are individually true but R is not the correct explanation of A  
(c) A is true but R is false  
(d) A is false but R is true 



 

 

GATE-1. Ans. (b) Let temperature t°C 

 

 Heat loss by hot water = heat gain by cold water 

 mh c ph (th1 − th 2 ) = mc c pc (tc 2 − tc1 ) 

or 5 × 2 × (150 − 100) = 10 × 4 × ( t − 20) 

or t = 32.5°C 
 

GATE-2. Ans. (a) și = 120 − 30 = 90  
 

θ o = 120 − 80 = 40 
 

LMTD =  ș i − șo = 90 − 40  = 61.66 °C  

    
 

     ș    90     
 

   

ln 
   

i 
  

ln 
 

 

   
 

  

 

   

 

    

  

șo 
   

 

      40     
 

Q = mc p ( tc 2 − tc1 ) = UA ( LMTD)  
 

 1500  
× 4.187 × 10 3 × ( 80 − 30)  

  

     

 

  

3600 
  

 

or A = 
            

 

        

2000 × 61.66 
 

 

          
 

= 0.707 m2 
 

GATE-3. Ans (c) As mhch = mccc. Therefore exit temp. = 100 – LMTD = 100 – 20 =80°C. 

 

GATE-4. Ans. (b) 

 

GATE-5. Ans. (d) 

 

GATE-6. Ans. (b) 

 

GATE-7. Ans. (b) și = 70 − 50 = 20  
 

θ o = 40 − 30 = 10 
 

LMTD = ș i − șo = 20 −10 = 14.43°  
 

20 
 

 

   ș     
 

 ln 
  

i 
 

 ln 
 

 

 
 

    

 

  

      
 

  
ș

o  10   
 

 



 

 

 
 
 
 

GATE-8. Ans. (b) 

Q 

 
t

c 2 − tc1 

 
 

Effectiveness ( İ ) = = 
 

 

Q t − t  

  
 

 max  h1 c1 
  

 

= 
55

 
−

 
26

 = 0.58 

76 − 26 
 

 

GATE-9. Ans. (b) İ = 
1 − e− NTU            

 

  
2 

    

1000 × 5 

    
 

           
 

and   NTU = 
 UA  

= = 1.25 
  

 

C   4000 ×1   
 

         
 

    min         

tc2 −15 

  
 

or  İ = 0.459 = 
t

h1 

−
 
t

h 2  = 
t

c 2 
−

 
t

c1  = ⇒ t = 55  
       

    

t
h1 

−
 
t

c1 

    

t
h1 

−
 
t

c1 102 −15 

c2  
 

          
  

IES-1. Ans. (c) 
 

IES-2. Ans. (b) 

IES-3. Ans. (a)  

Th in  
   

T out 

  

 Cold Fluid 
 

     
 

       
 

T out 
c 

    

Hot Fluid 
 

    
 

      
 

      
 

h 
  

T 
    

Cold Fluid 
 

      
 

T 
 

in 
  

 
Coutter Flow 

 

   
 

c        
   

Surface Area 
 

IES-4. Ans. (a) 
 

IES-5. Ans. (d)  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

IES-6. Ans. (a) If liquid is evaporating or a vapour is condensing then whether heat 

exchanger is counter flow or otherwise is immaterial. Same matters for liquid/gas 

flows. 



 

 

 

IES-7. Ans. (b) 
 

IES-8. Ans. (d) 
 

IES-9. Ans. (b)  

IES-10. Ans. (c) 
 

IES-11. Ans. (d) Baffles help in improving heat transfer and also provide support for  

 tubes.          
 

IES-12. Ans. (a) Capacity ratio of heat exchanger = 

t
 h 1 

−
 
t

h 2 
= 

180° − 160° 
= 0.25  

t c 1 − t c 2 
 

110° − 30° 
 

      
 

          

IES-13. Ans. (d)          
 

IES-14. Ans. (c)          
 

IES-15. Ans. (c) ș1 = ș2 = 50°         
 

 ș1 = ș 2 = 50°ș1 = Thi = T∞         
  

= 110 − 60 = 50°C  

ș2 = Tho = Tci = 80 − 30 = 50°C 
 
 

 

IES-16. Ans. (b) Both statements are correct but R is not exactly correct explanation for A. 

 

IES-17. Ans. (b)   

LMTD = 

t − t  

will 

 

o  i  
 

loge ( to /  ti ) 
 

be applicable when ti ≠  to 
 

and   if ti ≠ to  then 
 

LMTD = ti = to    
 

 
 

IES-18. Ans. (a) 



 

 

  
IES-19. Ans. (d) Mean temperature   

difference = ti = to = 100°C 
 
 
 
 
 
 
 
 

 

IES-20. Ans. (d) Mean temperature difference 
 

= Temperature of hot fluid at exit – Temperature of cold fluid at entry  
= 60° – 40° = 20°C  

IES-21.  Ans.  (d) Overall coefficient of  heat transfer  U  W/m2K  is  expressed  as 
 

 1 
= 

1 
+ 

x 
+ 

1 
= 

1 
+ 

0.15 
+ 

1  
= 
 27 

. So, U = 
25 

which is closer to the heat  
U h k h 25 0.15 25  25 27  

           
 

   i    o               
 

transfer coefficient based on the bricks alone.  
IES-22. Ans. (a) 

IES-23. Ans. (d) 

IES-24. Ans. (c) For parallel flow configuration, effectiveness 䌜= 1 
−

 exp(−2NTU ) 2 

 

䍈 Limiting value of 䌜 is therefore 
1
2 or 50%. 

 

IES-25. Ans. (d) 

    − NTU 1+ 
C

min             
 

     

 

           

  1 − e                       
 

       Cmax 

= 1 − e− NTU 
     

 

IES-26. Ans. (c) 䌜=                         
 

     

C
min 

               
 

1 +                       
 

      C                       
 

        max                     
 

For Parallerl flow[As boiler and condenser 
C

min ĺ 0] 
   

 

C    
 

                               
 

                           max     
 

   − NTU 1+ Cmin                 
 

                    

 

1 − e 
                      

 

= 
C

max      = 1 − e−NTU for Counter flow 
   

 

         C       
 

  
C

min 
− NTU 1+     min  

 
          

 

                   

1 +                          
 

e       Cmax           
 

 C                           
 

   max                           
 

IES-27. Ans. (c)                  

NTU 

        
 

IES-28. Ans. (b) Effectiveness, İ = 
   

= 0.8 
     

 

1 + NTU 
    

NTU 

 

                           
 

IES-29. Ans. (a) In this case the effectiveness of the heat exchanger ( İ ) = 
  

 

1 + NTU 
 

IES-30. Ans. (c) 
                       

 

                          
 

IES-31. Ans. (a) Fin −  hp / kA = m         
 

Heat exchanger − NTU = UA / Cmin       
 

Transient conduction − hl / ksolid (Biot No.)      
 

Heisler chart − 

   x                       
 

2 αĲ                     
 

IES-32. Ans. (c) NTU  = 
  AU   

, A = Area = 50m2 
     

 

  C          
 

                              
 

        min                     
  



 

 

  

U = Overall heat transfer coefficient = 100 W/m 

2K Cmin = Heat capacity = 1000 W/K 
 

䍈 NTU = 
50

 
×100

 
= 5 1000 

IES-33. Ans. (a) NTU = 
UA 

= 
 200 × 32.2 

= 1.2  
C 1030 × 5.25  

   
 

 min     
 

IES-34. Ans. (a) NTU (number of transfer units) used in analysis of heat exchanger is 

specified as AU/Cmin.  
IES-35. Ans. (d) 

 

IES-36. Ans. (a)  

IES-37. Ans. (c) Heat pipe can be used in different ways. Insulated portion may be made 

of flexible tubing to permit accommodation of different physical constraints. It 

can also be applied to micro-electronic circuits to maintain constant 

temperature. It consists of a closed pipe lined with a wicking material and 

containing a condensable gas. The centre portion of pipe is insulated and its two 

non-insulated ends respectively serve as evaporators and condensers. 
 

Heat pipe is device used to obtain 

very high rates of heat flow. In 

practice, the thermal conductance 

of heat pipe may be several 

hundred (500) times then that 

best available metal conductor, 

hence they act as super 

conductor. 
 
 

IES-38. Ans. (a) 



 

 

UNIT-4 

Radiation 
 

Introduction 
 
Definition: Radiation, energy transfer across a system boundary due to a T, by the 

mechanism of photon emission or electromagnetic wave emission. 
 

Because the mechanism of transmission is photon emission, unlike conduction and 

convection, there need be no intermediate matter to enable transmission. 
 
 
 
 
 

 

The significance of this is that radiation will be the only mechanism for heat transfer 

whenever a vacuum is present. 
 

Electromagnetic Phenomena:  
We are well acquainted with a wide range of electromagnetic phenomena in modern life. 

These phenomena are sometimes thought of as wave phenomena and are, consequently, 

often described in terms of electromagnetic wave length; Ȝ Examples are given in terms of 

the wave distribution shown below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solar Radiation 
 

The magnitude of the energy leaving the Sun varies with time and is closely associated 

with such factors as solar flares and sunspots. Nevertheless, we often choose to work with 

an average value. The energy leaving the sun is emitted outward in all directions so that 

at any particular distance from the Sun we may imagine the energy being dispersed over 

an imaginary spherical area. Because this area increases with the distance squared, the 

solar flux also decreases with the distance squared. At the average distance between Earth 



 

 

  
and Sun this heat flux is 1353 W/m2, so that the average heat Flux on any object in Earth 

orbit is found as:  

G s.o = S c .f.cosθ  
Where ,  

Sc =Solar Constant, 1353 W/m2  
f = correction factor for eccentricity in Earth Orbit,  

(0.97<f<1.03) 

θ = Angle of surface from normal to Sun. 
 

Because of reflection and absorption in the Earth’s atmosphere, this number is 

significantly reduced at ground level. Nevertheless, this value gives us some opportunity to 

estimate the potential for using solar energy, such as in photovoltaic cells. 
 
 

Some Definitions 
 

In the previous section we introduced the Stefan-Boltzman Equation to describe radiation 

from an ideal surface. 
 

Eb = σ ⋅ Tabs
4

 

 

This equation provides a method of determining the total energy leaving a surface, but 

gives no indication of the direction in which it travels. As we continue our study, we will 

want to be able to calculate how heat is distributed among various objects. 
 
 

For this purpose, we will introduce the radiation 

intensity, I, defined as the energy emitted per 

unit area, per unit time, per unit solid angle. 

Before writing an equation for this new property, 

we will need to define some of the terms we will 

be using. 
 
 

Angles and Arc Length 
 

We are well accustomed to thinking of an angle as a two dimensional object. It may be 

used to find an arc length: 
 

Solid Angle 
 

We generalize the idea of an angle and an 

arc length to three dimensions and define a 

solid angle, Ω, which like the standard angle 
has no dimensions. The solid angle, when 

multiplied by the radius squared will have 

dimensions of length squared, or area, and 

will have the magnitude of the encompassed 

area.   

Projected Area 



 

 

 
 
  

The area, dA1 as seen from the prospective 

of a viewer, situated at an angle θ from the 
normal to the surface, will appear somewhat 

smaller, as cos θ· dA1 . This smaller area is 

termed the projected area. 
 

A
 projected 

=
 
cos

 

θ.A
normal 

 

Intensity  

The ideal intensity, Ib May now is defined as the energy emitted from an ideal body, per 

unit projected area, per unit time, per unit solid angle. 
 

Ib = 
dq  

 

cos ș .dA1 .dΩ 
 

 
 

 

Spherical Geometry 
 
Since any surface will emit radiation outward in all directions above the surface, the 

spherical coordinate system provides a convenient tool for analysis. The three basic 

coordinates shown are R, φ, and θ, representing the radial, azimuthally and zenith 

directions. 

 

In general dA1 will correspond to the 

emitting surface or the source. The surface 

dA2 will correspond to the receiving surface 

or the target. Note that the area proscribed 

on the hemi-sphere, dA2 may be written as: 
  

dA2 = [ ( R ⋅ sin ș ) ⋅ dϕ ] ⋅ [ R ⋅ dș ] 
 

or, more simply as: 
 

 

2 
  

dA2 = R ⋅ sin ș ) ⋅ dϕ ⋅ dș 

 

 
 

Recalling the definition of the solid angle, 
 

dA = R 2 ⋅ dΩ 

 

We find that: 
 

d Ω = R 2 ⋅ sin θ ⋅ d θ ⋅ dϕ 

 

Real Surfaces 
 

Thus far we have spoken of ideal surfaces, i.e. those that emit energy according to the 
 

Stefan-Boltzman law: 
 

Eb = σ ⋅ Tabs
4

 

 

Real surfaces have emissive powers, E, which are somewhat less than that obtained 

theoretically by Boltzman. To account for this reduction, we introduce the emissivity, (ǆ). 



 

 

 

İ = 
E

 

Eb   
So, that the emissive power from any real surface is given by: 

 

E = 䃔 ⋅ σ ⋅ Tabs
4 

 
 

Absorptivity, Reflectivity and Transmissivity 
 

Receiving Properties  
Targets receive radiation in one of three 

ways; they absorption, reflection or 

transmission. To account for these 

characteristics, we introduce three 

additional properties:  
• Absorptivity, (α), the fraction of 

incident radiation absorbed.  
• Reflectivity, (ǒ), the fraction of 

incident radiation reflected. 

• Transmissivity, (Ǖ), the fraction of 
incident radiation transmitted. 

 

We see, from Conservation of Energy, that: 
 

α + ρ + Ĳ = 1 
 

In this course, we will deal with only opaque surfaces, Ĳ = 0 so that: 
 

α + ρ = 1   Opaque Surfaces 
 

For diathermanous body, α = 0, ρ = 0, Ĳ  = 1 

 

Secular Body: Mirror Like Reflection 

For a black body, İ = 1, for a white body surface, İ = 0 and  
For gray bodies it lies between 0 and 1. It may vary with temperature or wavelength. A 

grey surface is one whose emissivity is independent of wavelength 
 

A colored body is one whose absorptivity of a surface varies with the wavelength of 

radiation α ≠ ( α )Ȝ 

 

Black Body 
 

Black body: For perfectly absorbing body, α = 1.ρ = 0.Ĳ = 0. such a body is called a 'black  
body' (i.e., a black body is one which neither reflects nor transmits any part of the incident 

radiation but absorbs all of it). In practice, a perfect black body ( α = 1) does not exist. 

However its concept is very important. 

 

A black body has the following properties: 
 

(i) It absorbs all the incident radiation falling on it and does not transmit or reflect 

regardless of wavelength and direction.  
(ii) It emits maximum amount of thermal radiations at all wavelengths at any specified 



 

 

 

Temperature.  

(iii) It is a diffuse emitter (i.e., the radiation emitted by a black body is independent of 

direction). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Concept of a black body 
 
 

The Stefan – Boltzmann Law 
 

Both Stefan and Boltzman were physicists; any student taking a course in quantum 

physics will become well acquainted with Boltzman’s work as He made a number of 

important contributions to the field. Both were Contemporaries of Einstein so we see that 

the subject is of fairly recent Vintage. (Recall that the basic equation for convection heat 

transfer is attributed to Newton.) 
 

Eb = σ ⋅ Tabs
4

 

 
 

Where: Eb = Emissive Power, the gross energy emitted from an 
 

Idea surface per unit area, time. 
 

ı = Stefan Boltzman constant, 5.67 ×10
−8

 W / m
2
 ⋅ 

K
4
 Tabs = Absolute temperature of the emitting surface, K. 

 

Take particular note of the fact that absolute temperatures are used in Radiation. It is 

suggested, as a matter of good practice, to convert all temperatures to the absolute scale as 

an initial step in all radiation problems. 
 

Kirchoff's Law 
 

Relationship between Absorptivity, ( α ), and Emissivity, (ǆ) consider two flat, infinite 
planes, surface A and surface B, both emitting radiation toward one another. Surface B is 

assumed to be an ideal emitter, i.e. İB = 1.0. Surface A will emit radiation according to the  
Stefan-Boltzman law as: 



 

 

 
  

E A = İ A ⋅ ı ⋅ TA4 

 

And will receive radiation as: 
 

G A = α A ⋅ ı ⋅ TB4 
 
 
 
 

The net heat flow from surface A will be: 
 

q" = İ A ⋅ ı ⋅ TA 4 − α A ⋅ ı ⋅ TB
4

 

 

Now suppose that the two surfaces are at exactly the same temperature. The heat flow 

must be zero according to the 2nd law. If follows then that:  

α A = İA 
 

Because of this close relation between emissivity, (ǆ), and absorptivity, ( α ), only one 

property is normally measured and this value may be used alternatively for either 

property. 
 

The emissivity, (ǆ), of surface A will depend on the material of which surface A is 
composed, i.e. aluminum, brass, steel, etc. and on the temperature of surface A. 

 

The absorptivity, ( α ), of surface A will depend on the material of which surface A is 

composed, i.e. aluminum, brass, steel, etc. and on the temperature of surface B. 
 

In the design of solar collectors, engineers have long sought a material which would absorb 

all solar radiation, ( α = 1, Tsun ~ 5600K) but would not re-radiate energy as it came to  
temperature (ǆ << 1, Tcollector ~ 400K). NASA developed anodized chrome, commonly called 

“black chrome” as a result of this research. 
 

Planck's Law 
 

While the Stefan-Boltzman law is useful for 

studying overall energy emissions, it does 

not allow us to treat those interactions, 

which deal specifically with wavelength, ( Ȝ 

). This problem was overcome by another of 

the modern physicists, Max Plank, who 

developed a relationship for wave 

based emissions.  

EbȜ  = f ( Ȝ) 
 

We haven’t yet defined the Monochromatic 

Emissive Power, EbȜ . An implicit definition 
 

is provided by the following equation: 
 

Eb = ∫0
∞
 EbȜ .dȜ 

 

We may view this equation graphically as 

follows: 

 
 
 
 

We plot a suitable functional relationship 

below: 
 

 



 

 

 

A definition of monochromatic Emissive Power would be obtained by differentiating the 

integral equation:  

    
Ebλ  ≡ 

dEb     
 

    

dȜ 
   

 

         
 

The actual form of Plank’s law is:  

C1 

  
 

   
EbȜ  = 

    
 

   

Ȝ 
5

 ⋅ eC2 Ȝ .T − 1 

 

    
 

          
 

where: C = 2 ⋅ π ⋅ h ⋅ c 2 = 3.742 × 108 W ⋅ ȝm4 / m2   
 

 1  o       
 

 C = h ⋅ c 
o 

/ k = 1.439 × 104 ȝm ⋅ K    
 

 2         
 

where: h, co, k are all parameters from quantum physics. We need not worry about 
 

 their precise definition here.       
  

This equation may be solved at any T, Ȝ to give the value of the monochromatic emissivity 

at that condition. Alternatively, the function may be substituted into the integral 
∞  

Eb = ∫0 EbȜ .dȜ to find the Emissive power for any temperature. While performing this integral 

by hand is difficult, students may readily evaluate the integral through one of several computer 
programs, i.e. MathCAD, Maple, Mathematic, etc. 
 

Eb = ∫0
∞
 EbȜ .d Ȝ = ı ⋅ T 4 

 

Emission over Specific Wave Length Bands 
 

Consider the problem of designing a tanning machine. As a part of the machine, we will 

need to design a very powerful incandescent light source. We may wish to know how much 

energy is being emitted over the ultraviolet band (10-4 to 0.4 ȝ m), known to be particularly  
dangerous. 
 

Eb ( 0.0001 ĺ 0.4) = ∫0
0..001

4⋅ȝ
⋅
mȝm EbȜ ⋅ dȜ 

 

With a computer available, evaluation of this integral is rather trivial. Alternatively, the 

text books provide a table of integrals. The format used is as follows: 

Eb ( 0 . 001 ĺ 0 .4) 
= 

∫00..0014⋅ȝ
⋅
mȝm EbȜ ⋅ dȜ 

= 
∫ 00 . 4 ⋅ ȝm EbȜ ⋅ d Ȝ − ∫00 . 0001⋅ȝm EbȜ ⋅ dȜ 

 

Eb 
∞ ∞  ∞  

 

      

 

∫ 0  EbȜ .d 
Ȝ
 

 

∫ 0  EbȜ .d 
Ȝ

 

 

∫0  EbȜ .d
Ȝ

 

 

    
 

= F ( 0 ĺ 0 . 4 ) − F( 0 ĺ 0 . 0001) 

 

Referring to such tables, we see the last two functions listed in the second column. In the 

first column is a parameter, Ȝ ·T. This is found by taking the product of the absolute 

temperature of the emitting surface, T, and the upper limit wave length, Ȝ . In our 

example, suppose that the incandescent bulb is designed to operate at a temperature of 
 
2000K. Reading from the Table: 



 

 

This is the fraction of the total energy emitted which falls within the IR band. To find the 

absolute energy emitted multiply this value times the total energy emitted: 
 

EbIR = F(0.4 ĺ 0.0001 ȝm) ⋅ ı ⋅ T 4 = 0. 000014 × 5. 67 × 10
−8 × 20004 = 12.7W/m2 

 

Wien Displacement Law 
 

In 1893 Wien established a relationship between the temperature of a black body and the 

wavelength at which the maximum value of monochromatic emissive power occurs. A peak 

Monochromatic emissive power occurs at a particular wavelength. Wien's displacement 

law states that the product of Ȝmax and T is constant, i.e. 
 

Ȝ maxT = constant 
 

C Ȝ−5 

(
 
EȜ

 

)
b 

=
 exp 1C2 − 1 

 
ȜT  

 
 

( EȜ )b 
 
 
 
 
 

 

i.e. 
 
 
 
 

 

or, 

 
 
 

Becomes maximum (if T remains constant) when 
 

                 d (EȜ )b = 0              
 

                                  
 

                    dȜ                  
 

    

d ( EȜ ) 
                                

 

    
b   d  C Ȝ−5     

= 0 
           

 

         

 =   

 

 1       

 

           
 

      

d Ȝ 
 

dȜ 
 

C 
  

 

              

            
2  − 1 

               
 

               exp    

  

              
 

                                 
 

                 ȜT                   
 

   C 
2 
  − 1 

 
( − 5C Ȝ − 6 ) − C 

  
− 5 

    C 
2 
C 

2 
  1   

 

 

exp 
 

   

  

Ȝ exp 
 

 

 

 

 

−   

 

 

 
 

          2   

        1     1    

 

    

T 
 Ȝ 

  
 

   Ȝ T                   Ȝ T     
= 0 

 

             

 

 

 

 

C 
2  

  2 
             

 

                               
 

             exp    
 − 1                

 

              

ȜT 
                

                                    
  

or, − 5C Ȝ − 6 exp  C 2  + 5C Ȝ − 6 + C C Ȝ − 5 1 exp C2  = 0  
 

 

2  
 

 1    1   1   2        
 

    Ȝ T           Ȝ T   ȜT  
 

Dividing both sides by 5C Ȝ−6 , we get                
 

  1    C
 2 

    

1 

 

 1 

   C
2 

    
 

   − exp  + 1 + 
 

C2 
 
exp  = 0 

 
 

    

5 

 

Ȝ T 

   
 

      Ȝ T       ȜT   
 

 

Solving this equation by trial and error method, we get 



 

 

 
 
 

    C 2 
= 
 C

2   
= 4 . 965 

 
 

    λ T λ  T  
 

         
 

         max    
 

䍈 λ maxT = 
C2 

= 
1 . 439 ×104  Ǎmk = 2898 Ǎmk ( 2900 Ǎmk) 

 

4 . 965 
   

4 . 965 
  

 

          
 

i.e. Ȝ maxT = 2898 Ǎmk      
 

 

This law holds true for more real substances; there is however some deviation in the case of 

a metallic conductor where the product λmaxT is found to vary with absolute temperature. 
 

It is used in predicting a very high temperature through measurement of wavelength. 

 

A combination of Planck's law and Wien's displacement law yields the condition for the 

maximum monochromatic emissive power for a blackbody. 
 

           0 . 374 ×10 −15  2 .898 ×10
−3   

−5 
 

            

 

   

 

 

   

C ( λ 
 

)−5 
   

T 
  

 

( EbȜ ) 
 =   =    

 
  

 
 

max 

1  max          
 

              

    C    

− 1 

 1 .4388 ×10
−2  

− 1 

 

   

exp 
  

2 
 

 

exp 
 

 

 

       
 

   λ  T  2 .898 ×10
−3 

 

     max             
 

or, ( EbȜ )max = 1 . 285 ×10
−5 T 5 W/m2 per metre wavelength 

 

Intensity of Radiation and Lambert's Cosine Law 
 

Relationship between Emissive Power and Intensity  
By definition of the two terms, emissive power for an ideal surface, ( Eb), and intensity for 

an ideal surface, (Ib ). 

Eb = ∫ I b ⋅ cosș ⋅ dΩ  
hemisphere 

 

Replacing the solid angle by its equivalent in spherical angles: 
 

Eb = ∫0
2.π ∫0

π
 2 I b ⋅ cos ș ⋅ sinș ⋅ dș ⋅ dϕ  

 

Integrate once, holding Ib constant: 
 

Eb = 2.π ⋅ I b ⋅ ∫0
π
 2 cos ș ⋅ sinș ⋅ dș 

 

 

Integrate a second time (Note that the derivative of sin θ is cos θ·dθ.) 
π
  

E = 2.π ⋅ I ⋅ 
sin2 

ș
  2 = π ⋅ I 

  

Eb = π ⋅ Ib 

 

Radiation Exchange between Black Bodies Separates 

by a Non-absorbing Medium 
 

Radiation Exchange 



 

 

 
 

During the previous lecture we introduced 

the intensity, (I), to describe radiation 

within a particular solid angle. 

I = 
dq

  

cosș ⋅ dA1 ⋅ dΩ 
 

This will now be used to determine the 

fraction of radiation leaving a given surface 

and striking a second surface.  
Rearranging the above equation to express 

the heat radiated: 
 

dq = I ⋅ cosș ⋅ dA1 ⋅ dΩ 

 

Next we will project the receiving surface onto the hemisphere surrounding the source. 

First find the projected area of surface, dA2·cos θ2. (θ2 is the angle between the normal to 

surface 2 and the position vector, R.) Then find the solid angle, Ω, which encompasses this 
area. Substituting into the heat flow equation above: 

I ⋅ cos ș ⋅ dA ⋅ cosș  ⋅ dA 
dq = 

1 1 2 2 2  
R 

 

To obtain the entire heat transferred from a finite area, dA1, to a finite area, dA2, we 

integrate over both surfaces: 

q
1 ĺ2 = 

∫A1 

I ⋅ cos ș1 ⋅ dA1 ⋅ cosș2 ⋅ dA2 
 

R2 

 

 ∫ A2 
 

To express the total energy emitted from surface 1, we recall the relation between emissive 

power, E, and intensity, I. 
 

q
 emitted 

=
 
E

1 

⋅
 
A

1 

=
 

π
 

⋅
 
I

1 

⋅
 
A

1 
 

View Factors-Integral Method  
Define the view factor, F1-2, as the fraction of energy emitted from surface 1, which directly 

strikes surface 2.  

  
q 

 ∫ A2 ∫A1 
I ⋅ cos ș1 ⋅ dA1 ⋅ cosș2 ⋅ dA2  

 

F
1ĺ2 = = R 2  

 

  1 ĺ2      

  
q

emitted   π ⋅ I ⋅ A1  
 

After algebraic simplification this becomes:  

F
1 ĺ2 

=
 

1 ⋅
 ∫ A2 ∫A1 

cos ș1 ⋅ cosș2 ⋅ dA1 ⋅ dA2 
 

A1 π ⋅ R 2 
 

    
  

Example Consider a diffuse circular disk of diameter D and area Aj and a plane diffuse 

surface of area Ai << Aj. The surfaces are parallel, and Ai is located at a distance L from 

the center of Aj. Obtain an expression for the view factor Fij. 
 
 
 
 
 
 
 
 
 
 



 

 

  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The view factor may be obtained from:       
 

F
1 ĺ2 

=
 

1 
⋅
 ∫ A2 ∫A1 

cos ș1 ⋅ cosș2 ⋅ dA1 ⋅ dA2 
 

 A
1 π ⋅ R 

2  
 

         
 

Since dAi is a differential area           
 

 F
1 ĺ2 = 

  cos ș1 ⋅ cosș2 ⋅ dA1  
 

 ∫A1 π ⋅ R2 
  

 

       
  

Substituting for the cosines and the differential area: 
 

 F
1 ĺ2 

=
 ∫A1 

(L R)2 ⋅ 2π ⋅ r ⋅ dr    
 

        π ⋅ R2 
           

 

                       
 

After simplifying:           

L2 ⋅ 2π ⋅ r ⋅ dr 

      
 

  F
1 ĺ2 = 

          
 

          

R4 

            
 

      ∫A1              
 

Let ρ 2 ≡ L2 + r 2 = R 2 . Then 2 ⋅ ρ ⋅ dρ = 2 ⋅ r ⋅ dr.                
 

   F
1 ĺ2 

=
 
     L2 ⋅ 2ρ ⋅ dρ          

 

After integrating, 

  ∫A1 
 

ρ 4 
            

 

                   
 

                           

D
 2 

 

F1 ĺ2 = 2 ⋅ 
2 

 

ρ 2 

 

  

 

2  

    

1 

  
 

         
 

L ⋅ 
       

= − L ⋅ 
 

      

 

 

2 
      2 

+ ρ 
2 

 

        A     L   0 
 

       2                  
 

Substituting the upper & lower limits             

D2 

         
 

 2   4        1        D2 
 

F = − L ⋅            −      

=        
 

4 ⋅ L2 + D 2 L2  0 

          

1 ĺ2         

4 ⋅ L2 + D2 
 

         
  

This is but one example of how the view factor may be evaluated using the integral 

method. The approach used here is conceptually quite straight forward; evaluating the 

integrals and algebraically simplifying the resulting equations can be quite lengthy. 



 

 

 
 
 
 
 

 

Shape Factor Algebra and Salient Features of the 

Shape Factor 
 

1. The shape factor is purely a function of geometric parameters only. 
 

Enclosures 
 

In order that we might apply conservation of energy to the radiation process, we must 

account for all energy leaving a surface. We imagine that the surrounding surfaces act as 

an enclosure about the heat source which receives all emitted energy. Should there be an 

opening in this enclosure through which energy might be lost, we place an imaginary 

surface across this opening to intercept this portion of the emitted energy. For an N 

surfaced enclosure, we can then see that: 
N 

∑ Fi . j = 1This relationship is known as the” Conservation Rule”  
j=1 

 

Example: Consider the previous problem of 

a small disk radiating to a larger disk 

placed directly above at a distance L. The 

view factor was shown to be given by the 

relationship:  

F
1ĺ2 

=
 

 D2
   

 

4 ⋅ L2 + D2
 

 
 

  
 

Here, in order to provide an enclosure, we  
 

will  define  an  imaginary  surface  3,  a  
 

truncated cone intersecting circles 1 and 2.  
 

From our conservation rule we have:  
 

N     
 

∑ Fi . j 
=
 F1 . 1 

+
 F1. 2 

+
 F1. 3  

 

j=1     
 

Since surface 1 is not convex F1,1 = 0. Then: 

D2 
 

  

F1 ĺ3 = 1 − 

 

  4 ⋅ L2 + D2 
  

Reciprocity 
 

We may write the view factor from surface i to surface j as: 
 

Ai ⋅ Fi ĺ j = 
cosș i ⋅ cosș j ⋅ dAi ⋅ dAj  

 

 

π ⋅ R2 

 

∫ A j ∫Ai  
 

Similarly, between surfaces j and i:     
 

A j ⋅ Fj ĺi = 
 cosș j ⋅ cosși ⋅ dA j ⋅ dAi  

 

 

π ⋅ R2 

 

∫ Ai ∫Aj  
 

Comparing the integrals we see that they are identical so that: 
 

A
i 

⋅
 
F

i ĺ j 

=
 
A

 j 

⋅
 
F

j ĺi 
 This relation is known as” Reciprocity” 

 

 



 

 

  
Example: Consider two concentric spheres 

shown to the right. All radiation leaving the 

outside of surface 1 will strike surface 2. 

Part of the radiant energy leaving the inside 

surface of object 2 will strike surface 1, part 

will return to surface 2. To find the fraction 

of energy leaving surface 2 which strikes 

surface 1, we apply reciprocity:  

A ⋅ F = A ⋅ F ⇒ F = 

A
1 ⋅ F = 

A
1 = 

D
1 

 

   
 

2 2 .1 1 1 . 2 2 . 1  
A2 

1 . 2  
A2 

 
D2 

 

         
  

Associative Rule 
 

Consider the set of surfaces shown to the right: Clearly, from conservation of energy, the 

fraction of energy leaving surface i and striking the combined surface j+k will equal the 

fraction of energy emitted from i and striking j plus the fraction leaving surface i and 

striking k. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

F
i ⇒ ( j + k ) 

=
 
F

i ⇒ j 

+
 
F

i ⇒ k 

This relationship is 
 

Known as the 
 

 “Associative Rule” 
 

 

When all the radiation emanating from a convex surface 1 is intercepted by the enclosing 

surface 2, the shape factor of convex surface with respect to the enclosure F1-2 is unity. Then 

in conformity with reciprocity theorem, the shape factor F2-1 is merely the ratio of areas. A 

concave surface has a shape factor with itself because the radiant energy coming out from 

one part of the surface is intercepted by the part of the same surface. The shape factor of a 

surface with respect to itself is F1-r. 
 

(i) A black body inside a black enclosure: 



 

 

 
 
 
 
 
 
 
 
 
 
 

 
  

  
 

  
F

2 −1 

=
 
1

  ...Because all radiation emanating 
 

            From the black surface is intercepted 
 

            By the enclosing surface 1. 
 

  
F

1 −1 

+
 
F

1 −2 

=
 
1

  ... By summation rule for radiation from surface 1  

           
 

  
A

1 
F

1 −2 

=
 
A

2 
F

2 −1    
 

  F  =  A2 F  ... By reciprocity theorem  

      

  1 − 2    2 −1    
 

      
A

1    
 

䍈F1 −1 = 1 − F1 − 2 = 1 − 
A2  

F2 −1 = 1 − 
A2 

(䍉 F2 −1 = 1)  

A  
 

         A 
 

   A
2 
 1   1  

 

Hence, F = 1 −  (Ans.)    
 

    
 

 1 −1  
A1 

       
 

          
  

(ii) A tube with cross-section of an equilateral triangle  
 
 
 
 
 
 
 
 
 
 

 

A tube with cross-section of an equilateral triangle: 

 
F

1 −1 

+
 
F

1 − 2 

+
 
F

1 −3 

=
 
1

 ... By summation rule 
 

 
F

1 −1 

=
 
0

 ... Because the flat surface 1 cannot 
 

 
F

1 − 2 

+
 
F

1 −3 

=
 
1

 

See itself. 
 

䍈  
 

 F1 − 2 = F1 −3 = 0.5(Ans.) ... By symmetry 
 

Similarly, considering radiation from surface 2:  
 

 
F

2 −1 

+
 
F

2 − 2 

+
 
F

2 −3 

=
 
1

  
 

or, 
F

2 −1 

+
 
F

2 −3 

=
 
1

 (䍈 F2 −2 = 0 ) 
 

or, 
F

2 − 3 

=
 
1

 

−
 
F

2 −1  
 

 
A

1 
F

1 −2 

=
 
A

2 
F

2 −1 ... By reciprocity theorem 
 

 



 

 

 

2013 or, 
F

2 −1 

=
 
A1 F

1 − 2 

=
 
F

1 −2 (䍉 A1 = A2 ) 
 

A 
 

  2   
 

䍈 F2 − 3 = 1 − F1 −2 = 1 − 0. 5 = 0.5 (Ans.) 

 

(iii) Hemispherical surface and a plane surface  
 
 
 
 
 
 
 
 
 
 
 

 

Hemispherical surface and a plane surface: 

F
1 −1 

+
 
F

1 −2 

=
 
1

  

A
1 
F

1 − 2 

=
 
A

2 
F

2 −1 

or, F = 
A

2 F  

 
 

 1 − 2  A1 2 −1 
 

    
 

But, 
F

2 −1 

=
 
1

  
 

 
 
 

䍈 F1 −2 = 
A2 = 

πr2
2 

=0.5(Ans.) A1 2πr  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

... By summation rule 
 

... By reciprocity theorem 
 
 
 
 

 

... Because all radiation emanating 
 

From the black surface 2 are 

Intercepted by the enclosing 

Surface 1. 

 

Thus in case of a hemispherical surface half the radiation falls on surface 2 and the other 

half is intercepted by the hemisphere itself. 

(iv) Cylindrical cavity  
 
 
 
 
 
 
 
 
 
 
 
 
 

or, 

F
1 −1 

+
 
F

1 −2 = 1 ... By summation rule 
 

F
1 −1 = 1 − F1 −2  

 

Also, 
F

2 −1 
+

 
F

2 −2 = 1 ... By summation rule 
 

 F
2 −2 

=
 
0

  ... Being a flat surface (flat surface cannot 
 

  

= 1 

 See itself). 
 

 
F

2 −1  ... Because all radiation emitted by the 
 

 

 
 
 
 

 

or, 

 

or, 

 

 

A
1 
F

1 −2 

=
 
A

2 
F

2 −1 
A A 

F
1 − 2 

=
 A2 

F
2 −1 

=
 A2  



 

 

1 1  
F1 −1 = 1 
− F1 −2 = 

1 − 
A

A2 1  

  
Black 

surface 

2 is 

intercep

ted by 

the 

Enclosi

ng 

surface 

1. 

... By reciprocity 

theorem 

 

π d2 

or, F1 −1 = 1 − π 4  

4 d 2 + πdh  

(v) Conical cavity 
 
 
 
 
 
 
 
 
 
 
 

 

F1 −1 = 1 − 
A

A2 
1 

 
 
 

= 1 − 
d 

= 
d + 4h − d 

= 
4h 

 

d + 4h 4h + d 4h + d 
 

   
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

... This relation (calculated above) is applicable 
 

In this case (and all such cases) also. 
 

   π 
d 2 

      π 
d2 

   
 

= 1 − 

 4  

= 1 − 

    4    
 

           
 

 πd × slant height  πd    
2      d 2  

           
 

  

2 
    

× 
 

h + 
 

 

 
 

     2  2  
 

            
 

                
  

or, 
F

1 −1 = 1 − 

d 
 

4h 2 + d2
 

 

   
  

 

(vi) Sphere within a cube   

F11 + F12  = 1 
 

䍉 F11 = 0 
 

0 + F12  = 1  ⇒  F12  = 1 
 A

 1

F
12 = A 2F21       

 

   D 2   
 

 A
1 

 4π 
  

 π 

 

  

2 
 

⇒  F  = =   =  

 

6D
2

 

 

6 

 
 

21 

A
2    

 

 



 

 

 
 
 
 

 Shape Factor of Two Dimensional Elements               
 

    F
1 − 2  

=
 
1;

  

F
2 −1 = 

 A1   
 

 
1. Concentric 

  A
2  

 

   

[䍉 A1 F1 − 2 
         

   = A2 F2 −1 ]  
 

  cylinder        
A1 

           
 

    䍈 F = 1 −            
 

             
 

     2 −2     
A2 

        
 

                  
 

                         
 

 2. Long duct with                       
 

  equilateral  F = F  = 1                 
 

  
triangu lar  cr oss-  

12 13 
 

2                 
 

  

section 

                   
 

                        
 

                      
 

 3. Long parallel             2 2      
 

           

d 

  1   

d 

  
 

  plates of equal  F = F  =  1 +    −   
 

    12 21  

 

       

 

   

L  
 

 

  

width 

      L      
 

                      
 

                 
 

    F = F  = 1 − sin α         
 

               

    12 21       
2 

        
 

 4. Long symmetrical                   
 

                       
 

  wedge           [GATE-2002]  
 

                         
  

 

 

Shape Factor of Three Dimensional Elements 
 
 
 
 

5.  Concentric 

Spheres: F12 = 1, F21 = A1  

A2 

F22 = 1 − F21 = 1 − A1  

A2 



 

 

 
 
 
 
 
 
 
 

 

 6. Rectangular          

 1 

  
 

  tetrahedron  F
12 = F13  = F14 = 

  
 

    
3 

  
 

              
 

                
 

 7. Sphere near a lane    

1 

       
 

  plane area  

F
12 = 

       
 

     2        
 

                
 

 8. Small area              
 

  perpendicular to              
 

  the axis of a  

F12 = sin2 ș 

     
 

  surface of       
 

  revolution              
 

                
 

 9. Area on the inside              
 

  of a sphere  

F
12 = 

   A
2      

 

      4π R2       
 

                
  

 

 

Heat Exchange between Non-black Bodies 
 

Irradiation (G) 
 

It is defined as the total radiation incident upon a surface per unit time per unit 

area. It is expressed in w/m2 
 

Radiosity (J) 
 

This term is used to indicate the total radiation leaving a surface per unit time per 

unit area. It is also expressed in w/m2.  

J = E + ρG 

J = İEb + ρG 



 

 

 
 
 
  

Eb  = Emissive power of a perfect black body at the same temperature. 
 

Also, α + ρ + Ĳ = 1   

or α + ρ = 1 
 

(䍉 Ĳ = 0, the surface being opaque) 

 

ρ = 1 – α 
 

J = İ Eb + (1 – α) G 

 

α = İ, by Kirchhoff’s law 

J = İ Eb + 1 – İ) G 

 
 

 

Irradiation and Radiosity (J) 
 

or 

 

or 

 
 
 
 

Q
net 

 

A 

  

G = 
J − İ E

b 
1 − İ 

= J − G = J − 
J

 

−
 

İ
 
E

b 

1 − İ 

 
 
 

 

= 
E

b 

−
 

J
 

1 − İ  

Aİ 
Space resistance  

 
  

Of the total radiation which leaves surface 1, the amount that reaches 2 is J1A1F1-2. 

Similarly the heat radiated by surface 2 and received by surface 1 is J2A2F2-1. 

Q
12 

=
 
J

1 
A

1 
F

1 − 2 

−
 
J

 2 
A

2 
F

2 −1 
 

But A1 F1 − 2  = A2 F2 −1  

J1 − J2 

 

Q  = A F (J − J ) =  

  

12 1 12 1 2 
1  

 

   
 

       

 

 

      
A

1 

F
1 −2 

 

If the surface resistance of the two bodies and space resistance between them is 

considered then the net heat flow can be represented by an electric circuit. 
 
 
 
 
 
 
 

 

Heat flow can be represented by an electric circuit 
 

( 
Q

12 )net  
=

   E  − E    =   A ı (T 4 − T 4 )    
 

   b1  b2       1 1   2     
 

                    

  1 − İ 1 +  1  +  1 − İ 2    1 − İ 1 + 1  +  1 − İ2  A1  
 

 

A İ A F 
     

F 
 

A 
  

      A İ 
2 
   İ 

1 
   İ 

2 
  

 

 1  1  1  1 − 2 2      1 −2    2  
 

 



 

 

 
 
 
 
 

Heat Exchange ( Q12 )net = σb A 1 f12 (T14 - T24 )                           
 

Interchange factor ( f12 )= 
   1                            

 

 1 
 

 

1 
 

A1 
 1 

 
 

                  
 

                        
 

   
 - 1 + +  - 1                   

 

   ε 
  ε 

                  
 

   

  

 F A 

2  

 

 

                  
 

   1 12   2                    
 

                      

 

 

 
S.No. Cofiguraton 

   Geomatric factor     Inter change 
 

      
( F1 −2 ) 

         
factor ( f1 −2 ) 

    
 

                     
 

              f  =      1        
 

 

1. Infinite parallel plates       

1      

1 + 
  1 - 1    

           1-2       
 

                               
 

                          

 

        
 

                       ε   ε       
 

                     1     2       
 

  
Infinite long concentric cylinder or 

               1           
 

 

2. 
        

1 
    A

1 
 
 1 

 

−1 
 

 
 

 

Concentric spheres 
      

1 
     

+ 
     

 

               
 

 
 

 
 

               İ 
   

A 
 İ 

   
 

                 
1 
    

 2 
   

 
 

 

                    2        
 

 3. Body 1 (small) enclosed by body 2    1          İ1                
 

                     1           
 

 
4. Body 1 (large) enclosed by body 2 

   
1 

    1 
 + 

  A1 
  1 

 −1 
  

 

                
 

                 İ 
1 
   A  

 
İ 

2 
   

 
 

 

                    2        
 

 
5. 

Two rectangles with common side    
1 

         
İ1İ2 

            
 

 
at right angles to each other 

                          
 

                                  
 

For Infinite parallel plates for black surface                            
 

 

Qnet  = f12 Aı (T1
4 − T2

4 ) 

 

i) Infinite parallel plates  

f
12 = 

   1  
 

 1 +  1 −1  

      
 

   İ 1  İ2 
 

F1−2  = 1 and A1 = A2 

 

ii) Bodies are concentric cylinder and spheres 

 

f
12 = 1 = 

     1      
 

1 − İ 1 + 1 + 1 − İ2  A1  
 

        

A 
 

 

     İ 

1 

  İ 

2 

  
 

F1 −2  = 1 

      2  
 

           
 

 

iii) A small body lies inside a large enclosure 



 

 

 
 
 
 
 
 

f
1 −2 = 

   1  

= İ1 

 

1 − İ1 
+1 

 

     

İ1 

 
 

       
 

 

Electrical Network Analogy for Thermal Radiation 

Systems 
 

We may develop an electrical analogy for radiation, similar to that produced for 

conduction. The two analogies should not be mixed: they have different dimensions on the 

potential differences, resistance and current flows. 
 

 Equivalent Equivalent Potential 
 

 Current Resistance Difference 
 

         

Ohms Law I   R V 
 

      
 

Net Energy 
q1 → 

 1 − 䃔 
Eb − J 

 

Leaving Surface 

  

 

 

 

 
 

   䃔 ⋅ A  
 

Net Exchange q
i ĺ j 

  
1 

  

J1 − J2 

 

Between 
    

 

 A
1 

⋅
 
F

1 ĺ2 
 

Surfaces    
 

       
 

         

 

Solution of Analogous Electrical Circuits  

• Large Enclosures 
 

Consider the case of an object, 1, placed inside a large enclosure, 2. The system will 

consist of two objects, so we proceed to construct a circuit with two radiosity nodes. 
 
 
 
 
 
 

Now we ground both Radiosity nodes through a surface resistance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



 

 

9  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sum the series resistances 

 

RSeries = (1 − İ ) / (İ1 ⋅ A1 ) + 1 / A1 = 1 / (İ1 ⋅ A1 )  
Ohm’s law: 

i= V/R 

Or by analogy: 

q= Eb / R Series = İ1 ⋅ A1 ⋅ ı ⋅ ( T1 4 − T2
4 ) 

 

You may recall this result from Thermo I, where it was introduced to solve this type of 

radiation problem. 

 

• Networks with Multiple Potentials 
 

Systems with 3 or more grounded potentials 

will require a slightly different solution, but 

one which students have previously 

encountered in the Circuits course. the 

procedure will be to apply Kirchoff’s law to 

each of the Radiosity junctions.  
3 

∑ qi = 0 
i =1 

 

In this example there are three junctions, so 

we will obtain three equations. This will 

allow us to solve for three unknowns. 
 

Radiation problems will generally be presented on one of two ways: 
 

• The surface net heat flow is given and the surface temperature is to be found.  
• The surface temperature is given and the net heat flow is to be found. 

 

Returning for a moment to the coal grate furnace, let us assume that we know (a) the total 

heat being produced by the coal bed, (b) the temperatures of the water walls and (c) the 

temperature of the super heater sections. 
 

Apply Kirchoff’s law about node 1, for the coal bed: 
 

q + q + q = q + J 2 − J1 + J 3 − J1 = 0  
   

1 2 ĺ1 3 ĺ1 1 R
12 

 R
13 

 

      
 

Similarly, for node 2: 



 

 

 
 
 

q + q + q = Eb2 − J 2 + J1 − J2 + J 3 − J2 = 0  

   
 

2 1 ĺ 2 3 ĺ2  

R2 

 R
12 

 R
23 

 

      
 

Note how node 1, with a specified heat input, is handled differently than node 2, with a 

specified temperature. 
 

And for node 3:  

q + q + q = Eb3 − J 3 + J1 − J 3 + J 2 − J3 = 0  
    

3 1 ĺ 3 2 ĺ3  

R3 

 R
13 

R
23 

 

     
 

The three equations must be solved simultaneously. Since they are each linear in J, matrix 

methods may be used:  
 
 
 
 
 
 
 
 
 
 
 

 

The matrix may be solved for the individual Radiosity. Once these are known, we return to 

the electrical analogy to find the temperature of surface 1, and the heat flows to surfaces 2 

and 3. 
 

Surface 1: Find the coal bed temperature, given the heat flow:  

q = 
E − J  ı ⋅ T 4 − J ⇒ T = 

q ⋅ R + J 0. 25 
 

b1 1 = 1 1 
 

1 1 1 
 

 

        

1 

R1 

 

R1 

1  

ı 

 
 

       
 

 

Surface 2: Find the water wall heat input, given the water wall temperature: 

q 
 E 

b2 
− J 

2 
 ı ⋅ T 4 − J 

2  =   = 2  
 

       
 

2  
R2 

  
R2 

 
 

      
 

 

Surface 3: (Similar to surface 2) Find the water wall heat input, given the water 

wall temperature: 

q 
 E 

b3 
− J 

3 
 ı ⋅ T 4 − J 

3  =   = 3  
 

        

3   
R3 

  
R3 

 
 

      
 

 

Radiation Heat Exchange for Three Gray Surfaces 
 

The network for three gray surfaces is shown in Figure below. In this case each of the body 

exchanges heat with the other two. The heat expressions are as follows: 



 

 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Radiation network for three gray surfaces 

 

Q = J1 − J2 ; Q = J1 − J 3 ; Q = J 2 − J3 
 

   
 

12 
1

 
/

 
A

1 
F

1 − 2 

 13 
1

 
/

 
A

1 
F

1 − 3 

 23 
1

 
/

 
A

2 
F

2 −3 

 

        
 

The values of  Q12 , Q13 etc. are determined from the value of the radiosities which must be  
calculated first. The most-convenient method is the Krichhoff’s law which states that the 

sum of the currents entering a node is zero. 

 

Radiation Heat Exchange for Two Black Surfaces 

Connected by a Single Refractory Surface 
 

The network for two black surfaces connected by a single refractory surface is shown in the 

Figure below. Here the surfaces 1 and 2 are black and R is the refractory surface. The 

surface R is not connected to any potential as the net radiation transfer from this surface 

is zero.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Radiation network for two black surfaces  
Connected by a single refractory surface 

 

The total resistance between Eb1  and Eb2 



 

 

                   
 

 1 1          1      
 

        
 

          
 

 

 

Rt 
=

 1 / A1 F1 −2 + 
  

1 
   

1 
    

     
+ 

    
 

         A F A F     
 

         1 1 − R  R  R−2 
 

                
 

or, 
1 

= A1 F1 −2 + 

     
1 

     
 

 
         

 
 

Rt 
    

1 
    

1 
 

 

             
 

     A F +  A F   
 

      1 1 − R R  R−2   
   

Also 
 

∴ 

 

∴ 
 
 
 
 

 

∴ 
 
 
 
 
 

∴ 
 

 

or, 

 

F
1 − R 

+
 
F

1 −2 

=
 
1

 

F
1 − R 

=
 
1

 

−
 
F

1 −2 

F
2 − R 

+
 
F

2 −1 

=
 
1

 

F
2 − R 

=
 
1

 

−
 
F

2 −1  

A
R 
F

R − 2 

=
 
A

2 
F

2− R 
 
                                     

 

 
1 

            
1 

                     
 

 = A F +                             
 

     1  +     1             

 
R

t                           

  1   1 −2                                 
 

       

 

                  

  

         
 

        A
1 (1 − F1 − 2 ) 

  A
2 (1 − F2 −1 ) 

         
 

                      
 

                                   
 

                          
1 

        
 

( Q12 )net = ( Eb1 − Eb2 ) A1 F1 −2 
                  

 

 

+ 
                

 

 

      
1 

       
1 

 
 

                          

+ 
       

 

                  A 1 − F    A 1 − F    
 

                  1 ( 1 − 2 )    2 ( 2 −1 )  
 

( Q12 )net = A1 

 

1 − 2 ( Eb1 − Eb2 ) = A1 

 

1 −2 ı ( T1
4 − T2

4 ) 

     
 

F F      
 

                                     
 

                    

1 

             
 

∴ 
 

1 −2 = F +  
               

 

     
 

F                     
 

 

            

 

     

  

     
 

        1 −2   1 
        A1 1 

       
 

                               
 

            (1 − F1 − 2 ) 
+

   A2  (1 − F2 −1 )       
 

                                     
 

 
 

Using reciprocity relation A1 F1 − 2 = A2 F2 −1  and simplifying, we get 

   A − A F2
 

 

    

F1−2 = 

 2 1  1 −2 
 

A + A − 2A F 
 

1 2 1   1−2 
  

Radiation Heat Exchange for Two Gray Surfaces 

Connected by Single Refractory Surface 
 

The network for radiation heat exchange for two gray surfaces connected by single 

refractory surface is shown in Figure below. The third surface influences the heat transfer 

process because it absorbs and re-radiates energy to the other two surfaces which 

exchange heat. It may be noted that, in this case, the node 3 is not connected to a radiation 

surface resistance because surface 3 does not exchange energy. 



 

 

 

Network for two gray surfaces connected by a refractory surface  

The total resistance between Eb1 and Eb2  is given by 
 

 
 

 
 

 

1 − İ1 

 

1 − İ2 

 

1 

 
 

 R =  +  +      
 

    

1    

 t A1 İ1 A2İ2  
 

  

A
1 
F

1 −2 

+
 

 
 

   

  

 
 

                       1             1                
 

     
 

                                A F    
+

 A F                  
 

But 

                            1  1 − R      2  R−2            
 

F1 − R = 1 − F1 − 2  and F2 − R = 1 − F2 −1                                   
 

 
 

 
 

 

1 − İ1 

 

1 − İ2 

 

1 

 
 

∴ R =  +  +      

   

1   

 t A1 İ1 A2İ2  
 

  

A
1 
F

1 −2 

+
 

 
 

   

  

 

                         1                     1      
 

     
 

                                A (1 − F    ) +  A (1 − F ) 
 

1 1 − 2 2 2 −1 
 

We have 
 

 
 

     1       
 

    
 

 

A1 F 1 −2 = A1 F1− R + 
                                       

  

            
 

        

1 
                

1 
                       

 

  

+ 

  
 

 

 

        

               A (1 − F   ) A   (1  − F   )                
 

1 1 − 2 2 2 −1 
 

or, R = 1 − İ1 + 1 − İ2  +  1  
 

      

 t   

A1 İ1 
  

A2 İ2 
   

A1 F1 −2 
                                         

 

                                                    
 

 
 

 

( Q12 )net 
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Radiation Heat Exchange for Four Black Surfaces 
 

The network for radiation heat exchange for four black surfaces is shown in figure the net 

rate of flow from surface 1 is given by  

( Q1 )net = A1 F1 − 2 (Eb1 − Eb 2 ) + A1 F1 − 3 (Eb1 − Eb3 ) + A1 F1 −4 (Eb1 − Eb4 )  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Network for four black surfaces 
 

 

Radiation Heat Exchange for Four Gray Surfaces 
 

The network for radiation heat exchange for four gray surfaces is shown in figure below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

            Network for four gray surfaces 
 

The net rate of heat flow the four gray surfaces are given by: 
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Radiation Shields 
 

In certain situations it is required to reduce the overall heat transfer between two 

radiating surfaces. This is done by either using materials which are highly reflective or by 

using radiation shields between the heat exchanging surfaces. The radiation shields reduce 

the radiation heat transfer by effectively increasing the surface resistances without actually 

removing any heat from the overall system. Thin sheets of plastic coated with highly 
reflecting metallic films on both sides serve as very effective radiation shields. These are used 

for the insulation of cryogenic storage tanks. A familiar application of radiation shields is in 

the measurement of the temperature of a fluid by a thermometer or a thermocouple which is 

shielded to reduce the effects of radiation. 
 

Refer Figure shown in below. Let us consider two parallel plates, I and 2, each of area A 

(A1 = A2 = A) at Temperatures T1 and T2 respectively with a radiation shield placed 

between them as shown in figure below: 
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GATE-1. In radiative heat transfer, a gray surface is one [GATE-1997]  

(a) Which appears gray to the eye  
(b) Whose emissivity is independent of wavelength  
(c) Which has reflectivity equal to zero  
(d) Which appears equally bright from all directions. 

 

Common Data for Questions Q2 and Q3:  
Radiative heat transfer is intended between the inner surfaces of two very large 

isothermal parallel metal plates. While the upper plate (designated as plate 1) is 

a black surface and is the warmer one being maintained at 727°C, the lower plate 

(plate 2) is a diffuse and gray surface with an emissivity of 0.7 and is kept at 

227°C. 
 
Assume that the surfaces are sufficiently large to form a two-surface enclosure 

and steady-state conditions to exist. Stefan-Boltzmann constant is given as 5.67 × 

10-8 W/m2K4. 
 

GATE-2. The irradiation (in kW/m2) for the upper plate (plate 1) is:  [GATE-2009] 

 (a) 2.5 (b) 3.6 (c) 17.0 (d) 19.5 

GATE-3. If plate 1 is also a diffuse and gray surface with an emissivity value of 

 0.8, the net radiation heat exchange (in kW/m2) between plate 1 and 

 plate 2 is:   [GATE-2009] 

 (a) 17.0 (b) 19.5 (c) 23.0 (d) 31.7 
 

GATE-4. The following figure was generated from experimental data relating 

spectral black body emissive power to wavelength at three 

temperatures T1, T2 and T3 (T1 > T2 > T3). [GATE-2005] The conclusion is 

that the  
measurements are: 

(a) Correct because the maxima 

in Ebǌ show the correct trend 

(b) Correct because Planck's law 

is satisfied 

(c) Wrong because the Stefan 

Boltzmann law is not satisfied  
(d) Wrong because Wien's displacement law is not satisfied 



 

 

 
 
 

Shape Factor Algebra and Salient Features of the 

Shape Factor 
 

GATE-5. A hollow encloser is formed between 

two infinitely long concentric cylinders 

of radii 1 m ans 2 m, respectively. 

Radiative heat exchange takes place 

between the inner surface of the larger 

cylinder (surface-2) and the outer 

surface of the smaller cylinder (surface-

I). The radiating surfaces are diffuse 

and the medium in the enclosure is 

non-participating. The fraction of the 

thermal radiation leaving the larger 

surface and striking itself is: 
 
(a) 0.25 (b) 0.5 (c) 0.75 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[GATE-2008]   
(d) 1 
  

GATE-6. The shape factors with themselves of two infinity long black body 

concentric cylinders with a diameter ratio of 3 are……… for the inner 
 

and………………… for the outer.  [GATE-1994] 

(a) 0, 2/3 (b) 0, 1/3 (c) 1, 1/9 (d) 1, 1/3 

 

GATE-7. For the circular tube of equal length and 

diameter shown below, the view factor 

F13 is 0.17. 
  

The view factor F12 in this case will be: 
 

(a) 0.17 (b) 0.21 

(c) 0.79 (d) 0.83 
 
 

 

[GATE-2001] 

 

GATE-8. What is the value of the view factor for two inclined flat plates having 
 

common edge of equal width, and with an angle of 20 degrees? [GATE-

2002] 

(a) 0.83 (b) 1.17 (c) 0.66 (d) 1.34 

 

GATE-9. A solid cylinder (surface 2) is located at the centre of a hollow sphere 

(surface 1). The diameter of the sphere is 1 m, while the cylinder has a 

diameter and length of 0.5 m each. The radiation configuration factor 
 

F11 is:   [GATE-2005] 

(a) 0.375 (b) 0.625 (c) 0.75 (d) 1 
 



 

 

 
 
 
 

GATE-10. The radiative heat transfer rate per unit area (W/m2) between two 

plane parallel grey surfaces (emissivity = 0.9) maintained at 400 K and 

300 K is:   [GATE-1993] 

(a) 992 (b) 812 (c) 464 (d) 567 

  (Stefan Boltzman constant. σ = 5.67 × 10–8 W/m2 K4) 
 

GATE-11. A plate having 10 cm2 area each side is hanging in the middle of a room 

of 100 m2 total surface area. The plate temperature and emissivity are 

respectively 800 K and 0.6. The temperature and emissivity values for 

the surfaces of the room are 300 K and 0.3 respectively. Boltzmann's 

constant σ = 5.67 × 10-8 W/m2 K4. The total heat loss from the two 

surfaces of the plate is:  [GATE-2003] 

(a) 13.66 W (b) 27.32 W (c) 27.87 W (d) 13.66 MW 

 
 
IES-1. Fraction of radiative energy leaving one surface that strikes the other 

 surface is called [IES-2003] 

 (a) Radiative flux (b) Emissive power of the first surface 

 (c) View factor (d) Re-radiation flux 

IES-2. Assertion (A): Heat transfer at high temperature is dominated by 

 radiation rather than convection. [IES-2002] 

 Reason (R): Radiation depends on fourth power of temperature while 

convection depends on unit power relationship.  
(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R are individually true but R is not the of A  
(c) A is true but R is false  
(d) A is false but R is true 

 

IES-3. Assertion (A): In a furnace, radiation from the walls has the same 

wavelength as the incident radiation from the heat source. [IES-1998] 

Reason (R): Surfaces at the same temperature radiate at the same 

wavelength. 

(a) Both A and R are individually true and R is the correct explanation of A  
(b) Both A and R are individually true but R is not the correct explanation of A  
(c) A is true but R is false  
(d) A is false but R is true 

 

IES-4. Consider following parameters: [IES-1995]  
1. Temperature of the surface  
2. Emissivity of the surface  
3. Temperature of the air in the room  
4. Length and diameter of the pipe  
The parameter(s) responsible for loss of heat from a hot pipe surface in 

a room without fans would include  
(a) 1 alone (b) 1 and 2 (c) 1, 2 and 3 (d) 1, 2, 3 and 4 



 

 

IES-5. Which one of the following modes of heat transfer would take place 
 

 predominantly, from boiler furnace to water wall? [IES-1993] 
 

 (a) Convection  (b) Conduction  
 

 (c) Radiation  (d) Conduction and convection 
 

IES-6. A solar engine uses a parabolic collector supplying the working fluid at 
 

 500°C. A second engine employs a flat plate collector, supplying the 
 

 working fluid at 80°C. The ambient temperature is 27°C. The ratio 
 

 maximum work obtainable in the two cases is: [IES-1992] 
 

 (a) 1 (b) 2 (c) 4 (d) 16 
 

 
 

IES-7. Consider the following statements: [IES-1998] 
 

1. For metals, the value of absorptivity is high.  
2. For non-conducting materials, reflectivity is low.  
3. For polished surfaces, reflectivity is high.  
4. For gases, reflectivity is very low.  
Of these statements: 

 (a) 2, 3 and 4 are correct    (b) 3 and 4 are correct    
 

 (c) 1, 2 and 4 are correct    (d) 1 and 2 are correct    
 

IES-8. When α is absorbtivity, ρ is reflectivity and Ĳ is transmisivity, then for 
 

 diathermanous body, which of the following relation is valid? 

[IES-1992] 

 

 
(a) α = 1, ǒ = 0, Ĳ = 0 

   
(b) α = 0, ǒ = 1, Ĳ = 0 

 
 

       
 

 (c) α = 0, ǒ = 0, Ĳ = 1    (d) α + ǒ = 1, Ĳ = 0    
 

IES-9. Match List-I with List-II and select the correct answer  [IES-1996] 
 

 List-I      List-II      
 

 A. Window glass    1. Emissivity independent of 
 

       wavelength     
 

 B. Gray surface    2. Emission and absorption limited to 
 

       certain bands of wavelengths  
 

 C. Carbon dioxide   3. Rate  at  which  radiation  leaves  a 
 

       surface      
 

 D. Radiosity    4. Transparency to short wave radiation 
 

 Codes: A B C D   A B C D  
 

 (a) 1 4 2 3  (b) 4 1 3 2  
 

 (c) 4 1 2 3  (d) 1 4 3 2  
 

 

IES-10. Assertion (A): Solar Radiation is mainly scattered or transmitted but  
not absorbed by the atmosphere. [IES-1992] Reason (R): Absorptivity of 

atmosphere is low.  
(a) Both A and R are individually true and R is the correct explanation of A 

(b) Both A and R are individually true but R is not the correct explanation of A 

(c) A is true but R is false 

(d) A is false but R is true 



 

 

 
 
 

IES-11. Match List-I (Type of radiation) with List-II (Characteristic) and select 

the correct answer:       [IES-2002] 

List-I     List-II     

A. Black body   1. Emissivity does not depend on wavelength 

B. Grey body   2. Mirror like reflection   

C. Specular   3. Zero reflectivity    

D. Diffuse   4. Intensity same in all directions  
Codes: A B C D  A B C D 

(a) 2 1 3 4 (b) 3 4 2 1 

(c) 2 4 3 1 (d) 3 1 2 4 
 

IES-12. Consider the diagram 

given above. Which one of 

the following is correct?  
(a) Curve A is for gray body, 

Curve B is for black body, 

and Curve C is for 

selective emitter. 

(b) Curve A is for selective 

emitter, Curve B is for 

black body, and Curve C  

is for grey body. [IES-2007] 

(c) Curve A is for selective emitter, Curve B is for grey body, and Curve C is for 

black body. 

(d) Curve A is for black body, Curve B is for grey body, and Curve C is for 

selective emitter. 
 

IES-13.  Assertion (A): The nose of aeroplane is painted black. [IES-1996] 

Reason (R) Black body absorbs maximum heat which is generated by 

aerodynamic heating when the plane is flying.  
(a) Both A and R are individually true and R is the correct explanation of A 

(b) Both A and R are individually true but R is not the correct explanation of A 

(c) A is true but R is false 

(d) A is false but R is true 
 

IES-14. Two spheres A and B of same material have radii 1 m and 4 m and 

 temperature 4000 K and 2000 K respectively [IES-2004] 

 Which one of the following statements is correct?  

 The energy radiated by sphere A is:  

 (a) Greater than that of sphere B (b) Less than that of sphere B 

 (c) Equal to that of sphere B (d) Equal to double that of sphere B 

IES-15. A body at 500 K cools by radiating heat to ambient atmosphere 

 maintained at 300 K. When the body has cooled to 400 K, the cooling 

 rate as a percentage of original cooling rate is about. [IES-2003] 

 (a) 31.1 (b) 41.5 (c) 50.3 (d) 80.4 

IES-16. If the temperature of a solid state changes from 27°C to 627°C, then 

 emissive power changes which rate [IES-1999; 2006] 

 (a) 6 : 1 (b) 9 : 1 (c) 27 : 1 (d) 81: 1 
 



 

 

 

IES-17. A spherical aluminium shell of inside diameter 2 m is evacuated and 

used as a radiation test chamber. If the inner surface is coated with 

carbon black and maintained at 600 K, the irradiation on a small test  
surface placed inside the chamber is:                      [IES-1999] (Stefan-

Boltzmann constant σ = 5.67 × 10-8 W/m2K4)  
(a) 1000 W/m2 (b) 3400 W/m2 (c) 5680 W/m2 (d) 7348 W/m2 

 

IES-18. A large spherical enclosure has a small opening. The rate of emission of 

radiative flux through this opening is 7.35 kW/m2. The temperature at 

the inner surface of the sphere will be about (assume Stefan Boltzmann 

constants σ = 5.67 × 10-8 W/m2K4)  [IES-1998] 

(a) 600 K (b) 330 K (c) 373 K (d) 1000 K 
 
 

IES-19. What is the ratio of thermal conductivity to electrical conductivity  
equal to? [IES-2006] 

(a) Prandtl number (b) Schmidt number 

(c) Lorenz number (d) Lewis number 

 

IES-20. Match List-I with List-II and select the correct answer using the code 

given below the lists:       [IES-2008] 
 

List-I       List-II    
 

A. Heat transfer through solid   1. Radiation heat transfer  
 

B. Heat transfer from fluid   2. Fourier's law of heat 
 

C. Heat transfer in boiling liquid 

  conduction   
 

 3. Convection heat transfer  
 

D. Heat transfer from one body to another 4. Newton's law of cooling  
 

body separated in space        
 

Codes: A B C D  A B C D  
 

(a) 3 1 2 4 (b) 2 4 3 1  
 

(c) 2 1 3 4 (d) 3 4 2 1  
 

 

IES-21. Match List-I with List-ll 

given below the lists:  
List-I 

A. Stefan-Boltzmann law  
B. Newton's law of cooling  

C. Fourier's law    3. q = kL ( T1 − T2 )   

      

        A   
 

D. Kirchoff’s law    4. q = ı A (T1
4 − T2

4 )  
 

     5. q = kA (T1 − T2 )  
 

Codes: A B C D  A   B C D 
 

(a) 4 1 3 2 (b) 4 5 1 2 
 

(c) 2 1 3 4 (d) 2 5 1 4 
 

 

IES-22. Match List-

I (Law) with List-II (Effect) and select the correct answer  
using the code given below the lists: [IES-2008] 

 

List-I List-II  
A. Fourier's Law 1.  Mass transfer 



 

 

 
B. Stefan Boltzmann Law  2. Conduction   

 

C. Newton's Law of Cooling  3. Convection   
 

D. Ficks Law    4. Radiation   
 

Codes: A B C D  A B C D 
 

(a) 3 1 2 4 (b) 2 4 3 1 
 

(c) 3 4 2 1 (d) 2 1 3 4 
 

 
 

IES-23. What is the basic equation of thermal radiation from which all other 
equations of radiation can be derived? [IES-2007] 

(a) Stefan-Boltzmann equation (b) Planck’s equation  

(c) Wien’s equation  (d) Rayleigh-Jeans formula 

IES-24.  The spectral emissive power Eǌ for a diffusely emitting surface is: 

Eǌ = 0 for ǌ< 3 Ǎm  [IES-1998] 

Eǌ = 150 W/m2Ǎm for 3 < ǌ < 12 Ǎm  

Eǌ = 300 W/m2Ǎm for 12 < ǌ < 25 Ǎm  

Eǌ = 0 for ǌ > 25 Ǎm 

The total emissive power of the surface over the entire spectrum is: 

(a) 1250 W/m2 (b) 2500 W/m2 (c) 4000 W/m2 (d) 5250 W/m2 

 

IES-25. The wavelength of the radiation emitted by a body depends upon  
(a) The nature of its surface (b) The area of its surface [IES-1992] 

(c) The temperature of its surface (d) All the above factors. 
 
 

IES-26. Match List-I with List-II and select the correct answer using the code 

given below the lists:       [IES-2005] 

List-I      List-II    

A. Radiation heat transfer  1. Fourier number  

B. Conduction heat transfer  2. Wien displacement law 

C. Forced convection   3. Fourier law   

D. Transient heat flow   4. Stanton number  
Codes: A B C D  A B C D 

(a) 2 1 4 3 (b) 4 3 2 1 

(c) 2 3 4 1 (d) 4 1 2 3 
 

IES-27. Sun's surface at 5800 K emits radiation at a wave-length of 0.5 Ǎm. A 

furnace at 300°C will emit through a small opening, radiation at a 
 

wavelength of nearly  [IES-1997] 

(a) 10 Ǎ (b) 5 Ǎ (c) 0.25 Ǎ (d) 0.025 Ǎ 

 
 

IES-28.  Which one of the following statements is correct? [IES-2007] 

For a hemisphere, the solid angle is measured  

(a) In radian and its maximum value is π  
(b) In degree and its maximum value is 180°  
(c) In steradian and its maximum value is 2 π  
(d) In steradian and its maximum value is π 



 

 

 

 

IES-29. Intensity 

of radiation at a surface in perpendicular direction is equal 
 

to: [IES-2005; 2007] 
 

(a) Product of emissivity of surface and 1/Ǒ  
(b) Product of emissivity of surface and Ǒ  
(c) Product of emissive power of surface and 1/ Ǒ  
(d) Product of emissive power of surface and Ǒ 

 

IES-30. The earth receives at its surface radiation from the sun at the rate of 

1400 W/m2. The distance of centre of sun from the surface of earth is 1.5 

× 108 m and the radius of sun is 7.0 × 108 m. What is approximately the 

surface temperature of the sun treating the sun as a black body? 
 

[IES-2004] 
 

(a) 3650 K (b) 4500 K (c) 5800 K (d) 6150 K 

  
IES-31. What is the value of the shape factor for two infinite parallel surface 

 

separated by a distance d?  [IES-2006] 

(a) 0 (b) ∞ (c) 1 (d) d 

 

IES-32. Two radiating surfaces A1 = 6 m2 and A2 = 4 m2 have the shape factor 
 

F1–2 = 0.1; the shape factor F2 – 1 will be: [IES-2010] 

(a) 0.18 (b) 0.15 (c) 0.12 (d) 0.10 

 

IES-33. What is the shape factor of a hemispherical body placed on a flat 
 

surface with respect to itself?  [IES-2005] 

(a) Zero (b) 0·25 (c) 0·5 (d) 1·0  
IES-34. A hemispherical surface 1 lies 

over a horizontal plane 

surface 2 such that convex 

portion of the hemisphere is 

facing sky. What is the value 

of the geometrical shape 

factor F12?  
(a) ¼ (b) ½ 

(c) 3/4 (d) 1/8  
[IES-2004] 

 

IES-35. What will be the view factor 

F21 for the geometry as shown 

in the figure above (sphere 

within a cube)?  

(a) 
π 

(b) 
π 

 

2 4 
 

  
 

 



 

 

 

 (c) 
π 

(d) 
π 

 

3 
 

4 

[IES-2009] 

 

   
 

     
 

 

IES-36. The shape factor of a hemispherical body placed on a flat surface with 

 respect to itself is:  [IES-2001] 

 (a) Zero (b) 0.25 (c) 0.5 (d) 1.0 

IES-37. A small sphere of outer area 0.6 m2 is totally enclosed by a large cubical 

 hall. The shape factor of hall with respect to sphere is 0.004. What is the 

 measure of the internal side of the cubical hall? [IES-2004] 

 (a) 4 m (b) 5 m (c) 6 m (d) 10 m 

 

IES-38. A long semi-circular dud is 

shown in the given figure. 

What is the shape factor F22 

for this case? 
 

(a) 1.36 (b) 0.73 

(c) 0.56 (d) 0.36 
 

[IES-1994] 

 

IES-39. Consider two infinitely long 

blackbody concentric cylinders with a 

diameter ratio D2/D1 = 3. The shape 

factor for the outer cylinder with 

itself will be: 
 

(a) 0 (b) 1/3 

(c) 2/3 (d) 1 
 

[IES-1997]  
IES-40. Match 

List-I with List-II and select the correct answer using the code  

given below the Lists:       [IES-2007] 

List-I      List-II    

A. Heat Exchangers   1. View factor   

B. Turbulent flow   2. Effectiveness   

C. Free convention   3. Nusselt number  

D. Radiation heat transfer  4. Eddy diffusivity  

Codes: A B C D  A B C D 

(a) 3 1 2 4 (b) 2 4 3 1 

(c) 3 4 2 1 (d) 2 1 3 4 

 

IES-41. Match List-I with List-II and select the correct answer using the code 
 

given below the lists:  [IES-2006] 

List-I  List-II 

A. Radiation heat transfer 1. Biot’s number 

B. Conduction heat transfer 2. View factor 
 



 

 

C. Forced convection   3. Fourier's law   
 

D. Transient heat flow   4. Stanton number  
 

Codes: A B C D  A B C D 
 

(a) 4 3 2 1 (b) 2 1 4 3 
 

(c) 4 1 2 3 (d) 2 3 4 1 
 

 

IES-42. What is the value of the shape 

factor F12 in a cylindrical cavity 

of diameter d and height h 

between bottom face known as 

surface 1 and top flat surface 

know as surface 2? 
 

(a) 

 2h 

(b) 

 2d 
 

 2h + d  d + 4h 
 

(c) 

 4d 

(d) 

 2d 
 

4d + h   2d + h 
 

 

[IES-2004]  
IES-43. An 

enclosure consists of the four surfaces 1, 2, 3 and 4. The view factors  

for radiation heat transfer (where the subscripts 1, 2, 3, 4 refer to the 

respective surfaces) are F11 = 0.1, F12 = 0.4 and F13 = 0.25. The surface 

areas A1 and A4 are 4 m2 and 2 m2 respectively. The view factor F41 is: 
 

[IES-2001] 
 

(a) 0.75 (b) 0.50 (c) 0.25 (d) 0.10 

 

IES-44. With reference to the above 

figure, the shape factor 

between 1 and 2 is: 
 

(a) 0.272  
(b) 0.34  
(c) 0.66  
(d) Data insufficient 

 
 

 
 

2.5 m 
         

1 
  

 

      

 

    
 

          
 

            
 

               
 

1.75 m 

     

4 5 

 

     
 

  

   

 

  
 

               
 

1.5 m 

      

3 

   
 

        
 

   

  

   
 

      
 

               
  

 

2 m 
2     

 

      
 

       
 

   

6 m 
 

 

 
 

     
 

   [IES-2010]  
 

 
 

IES-45. Match  

List-I  (Surface  with  orientations)  with  List-II  (Equivalent  
emissivity) and select the correct answer: [IES-1995; 2004]  

List-I List-II  

A. Infinite parallel planes 1. İ1 
 
 
 



 

 

  
B. Body 1 completely enclosed 

by body 2 but body 1 is 

very small 
 

C. Radiation exchange 

Between two small grey 

bodies 
 

D. Two concentric cylinders 

with large lengths 

Codes: A B C 

(a) 3 1 4 

(c) 2 1 4 

 

2. 
1

  1 + 
1

 −1
 

İ1    İ2  
3. 

1
 

1 +  
A

1
1 

−1
 

İ A   İ 
122  

 

4. İ1İ2 
 

D  A B C D 

2 (b) 2 4 1 3 

3 (d) 3 4 1 2 
  

IES-46.  What is the equivalent emissivity for radiant heat exchange between a 

small body (emissivity = 0.4) in a very large enclosure (emissivity = 0·5)? [IES-

2008]  
(a) 0·5 (b) 0·4 (c) 0·2 (d) 0·1 

 

IES-47. The heat exchange between a small body having emissivity İ1 and area 

A1; and a large enclosure having emissivity İ2 and area A2 is given by q1 −2 

= A1İ 1ı ( T14 − T24 ). What is 'the assumption for this equation?[IES-2008] 
 

(a) İ2  = 1 (b) İ2  = 0 
 

(c) A1 is very small as compared to A2  
(d) Small body is at centre of enclosure 

 

IES-48. Two large parallel grey plates with a small gap, exchange radiation at 

the rate of 1000 W/m2 when their emissivities are 0.5 each. By coating 

one plate, its emissivity is reduced to 0.25. Temperature remains  
unchanged. The new rate of heat exchange shall become: [IES-2002]  
(a) 500 W/m2 (b) 600 W/m2 (c) 700 W/m2 (d) 800 W/m2 

 

IES-49. For the radiation between two infinite parallel planes of emissivity ε1 

and ε2 respectively, which one of the following is the expression for  

emissivity factor?  

1 

  

 1 

  [IES-1993; 2007] 
 

(a) ǆ1 ǆ2 
    

(b) + 
   

 

    

İ1 
 

İ 2 
 

            
 

(c) 

   1    

(d) 

    1      
 

 1  + 1    1  +   1 −1  
 

  İ1  İ 2   İ1     İ 2 
 

IES-50. The radiative heat transfer rate per unit area (W/m2) between two plane 

parallel grey surfaces whose emissivity is 0.9 and maintained at 

400 K and 300 K is:   [IES-2010] 

(a) 992 (b) 812 (c) 567 (d) 464 

Rate of Heat Transfer    

q = f 12 . ı . (T1
4
  − T2

4
 ) = 0.8182 × 5.67 × 10–8 (4004 – 3004) W/m2 = 812 W/m2 



 

 

 
 
 

IES-51. What is the net radiant interchange per square meter for two very large 

plates at temperatures 800 K and 500 K respectively? (The emissivity of 

the hot and cold plates are 0.8 and 0.6 respectively. Stefan 

Boltzmann constant is 5.67 × 10- 8 W/m2 K4). [IES-1994] 

(a) 1.026 kW/m2   (b) 10.26 kW/m2 (c) 102.6 kW/m2 (d) 1026 kW/m2 

  
IES-52. Using thermal-electrical analogy in heat transfer, match List-I 

(Electrical quantities) with List-II (Thermal quantities) and select the 

correct answer:        [IES-2002] 

List-I      List-II    

A. Voltage    1. Thermal resistance  

B. Current    2. Thermal capacity  

C. Resistance    3. Heat flow   

D. Capacitance    4. Temperature   

Codes: A B C D  A B C D 

(a) 2 3 1 4 (b) 4 1 3 2 

(c) 2 1 3 4 (d) 4 3 1 2 

 

IES-53. For an opaque plane surface the irradiation, radiosity and emissive 
 

 power are respectively 20, 12 and 10 W/m2.What is the emissivity of the 
 

 surface?            [IES-2004] 
 

 (a) 0.2  (b) 0.4    (c) 0.8    (d) 1.0 
 

IES-54. Heat transfer by radiation between two grey bodies of emissivity ε is 
 

 proportional to (notations have their usual meanings)  [IES-2000] 
 

 

(a ) 

( Eb − J ) 

(b ) 

( Eb − J ) 

(c ) 

(Eb − J ) 

(d ) 

( Eb − J ) 
 

 (1 − İ ) (1 − İ ) / İ  1 − İ ) 
2  1 − İ 

2
 ) 

 
 

       (    (  
 

IES-55. Solar radiation of 1200 W/m2  falls perpendicularly on a grey opaque 
 

 surface of emissivity 0.5. If the surface temperature is 50°C and surface 
 

 emissive power 600 W/m2, the radiosity of that surface will be: [IES-2000] 
 

(a) 600 W/m2 (b) 1000 W/m2 (c) 1200 W/m2 (d) 1800 W/m2 

 

IES-56. A pipe carrying saturated steam is covered with a layer of insulation  

and exposed to ambient air. [IES-1996]  
 
 
 

 

The thermal resistances are as shown in the figure.  

Which one of the following statements is correct in this regard?  
(a) Rsream and Rpipe are negligible as compared to Rins and Rair  
(b) Rpipe and Rair are negligible as compared to Rins and Rsteam  
(c) Rsteam and Rair are negligible as compared to Rpipe and Rins  
(d) No quantitative data is provided, therefore no comparison is possible. 



 

 

 
 
  

IES-57. Solar energy is absorbed by the 

wall of a building as shown in the 

above figure. Assuming that the 

ambient temperature inside and 

outside are equal and considering 

steady-state, the equivalent circuit 

will be as shown in (Symbols: Rco =  
Rconvection,outside  RCI  =  Rconvection,inside  
and Rw = RWall)  

 
 
 
 
 
 
 
 
 
 
 
 

 

[IES-1998] 

 

IES-58.  Which of the following would lead to a reduction in thermal resistance? 

1.  In conduction; reduction in the thickness of the material and an 
 

increase in the thermal conductivity. [IES-1994] 

2. In convection, stirring of the fluid and cleaning the heating surface.  
3. In  radiation,  increasing  the  temperature  and  reducing  the  

emissivity. 
 

Codes: (a) 1, 2 and 3 (b) 1 and 2 (c) 1 and 3 (d) 2 and 3 

 
 

IES-59. Two long parallel surfaces, each of emissivity 0.7 are maintained at 

different temperatures and accordingly have radiation exchange 

between them. It is desired to reduce 75% of this radiant heat transfer 

by inserting thin parallel shields of equal emissivity (0.7) on both sides. 
 

What would be the number of shields? [IES-1992; 2004] 
 

(a) 1 (b) 2 (c) 3 (d) 4 

 

IES-60. Two long parallel plates of same emissivity 0.5 are maintained at 

different temperatures and have radiation heat exchange between 

them. The radiation shield of emissivity 0.25 placed in the middle will 
 

reduce radiation heat exchange to: [IES-2002] 

(a) ½ (b) ¼ (c) 3/10 (d) 3/5 
 



 

 

 
 
 

GATE-1. Ans. (b)        
 

GATE-2. Ans. (a)        
 

GATE-3. Ans. (d)        
 

GATE-4. Ans. (d) 

A1 

 

π D1 L 

 

1 

 
 

GATE-5. Ans. (b) It is shape factor = 1 − = 1 − = 1 − = 0.5  
A π D L  2  

     
 

  2  2     
 

GATE-6. Ans. (a) 

GATE-7. Ans. (d) Principal of conservation gives 

F
1 −1 

+
 
F

1 − 2 

+
 
F

1 −3 

=
 
1

 

F1 −1 = 0, flat surface cannot see itself  

or F1 −2 = 0.83 
 

GATE-8. Ans. (a) F12  = F21 = 1 − sin (
α

 2) = 1 − sin10 = 0.83 
 

GATE-9. Ans. (c) F2 − 2 = 0; F2 −1 = 1 and  
A  

A
1 
F

1 − 2 

=
 
A

2 
F

2 −1   
or

 
F

1 −2 

=
 A

2 1  

and F1 −1 + F1 −2 = 1 gives        
 

F
1 −1 = 1 − F1 −2 = 1 − 

 
A

2            
 

 A1            
 

 = 1 − 
( π DL + 2 × π D2 / 4 )       

 

                  

     4π r2            
 

[and given D = L]              
 

F = 1 − 1.5 × 0.52  = 0.625         
 

          
 

1 −1 4 × 0.52   
1 

       
1 

  
 

GATE-10. Ans. (b) f12 =        =      = 0.818  
 

1 
   

 
1 

  

1 
 

 
1 

 
 

     +  − 1 + −1  

       

İ2 
 

0.9 0.9 
 

     İ 1         
 

Q = f12ı (T1
4 − T2

4 ) = 0.818 × 5.67 × 10
−8 (4004 − 3004 ) = 812W 

 

GATE-11. Ans. (b) Given: A = 2 × 10cm2 = 2 × 10
−3 m2 and A = 100m2    

 

T1 = 800K 

1  

= 300K 

         2      
 

T2                 
 

İ 1 = 0.6 

İ
2 = 0.3  

1 

         
1 

     
 

Interchange factor ( f1 −2 ) = 
          

= 
        

= 0.6 
 

 
1 + 

 
A1 

  
1 −1 

  1 
+ 

2 ×10
−3 1 

−1 
 

 

     

  

    

 

 

 

 

  

 

  

0.6 100 0.3 
 

    

A 
 İ 

 
 

   İ 
1    

 2   
    

 

      2              
 

Qnet = f1 −2ı A1 ( T1
4 − T2

4 ) = 0.6 × 5.67 × 10
−8 × 2 × 10

−3 ( 8004 − 3004 )W = 27.32W 



 

 

 
 

IES-1. Ans. (c) 
 

IES-2. Ans. (a)  
IES-3. Ans. (d) Wall and furnace has different temperature. IES-4. Ans. (d) All 

parameters are responsible for loss of heat from a hot pipe surface. IES-5. Ans. (c) In 

boiler, the energy from flame is transmitted mainly by radiation to  
water wall and radiant super heater.  

IES-6. Ans. (c) Maximum efficiency of solar engine = 
T

1 
−

 
T

2 

T1  
 

(500 + 273) − (27 + 273) 
 

473 
   

W1 
 

 

= =  =  say,  

50 + 273 773 Q 
 

  

 

  

 
 

     1 
 

where, W is the work output for Q1 heat input.  

Maximum efficiency of second engine = (273 + 80) − (273 + 27) 
 

53 
   

W2 
 

 

=  =  say,  

273 + 80 353 Q 
 

  

 

  

 
 

     2 
 

where, W2 is the work output of second engine for Q2 heat output.  
Assuming same heat input for the two engines, we have  

∴W
1 = 473 / 7333 = 4 53 / 353W2 

 

IES-7. Ans. (c) 
 
IES-8. Ans. (c)  
IES-9. Ans. (c)  
IES-10. Ans. (a)  
IES-11. Ans. (d)  
IES-12. Ans. (d)  
IES-13. Ans. (b) 

IES-14. Ans. (c) E = ı AT 4 ;  ∴ 

E
 A 

= 
4π r 2 A 

T
A 4 

=  
12 × 40004  

= 1 
  

 

EB 4π r 2 B 
T

B 4 42 × ( 2000)4 
  

 

          
 

IES-15. Ans. (a)                   
 

IES-16. Ans. (d) Emissive power(E ) = İıT 4 or 
 E T 4  300 4  1 

 

 
1  = 1 

 

=   
 =   

E
 2 

 

900 81 

 

        
T

2     
 

IES-17. Ans. (d) Irradiation on a small test surface placed inside a hollow black spherical 

chamber = σT4 = 5.67 × 10-8 × 6004 = 7348 W/m2 

IES-18. Ans. (a) Rate of emission of radiative flux = ıT 4 
 

or 7.35 × 103 = 5.67 × 10
−8 × T 4 

 

IES-19. Ans. (c)  
IES-20. Ans. (b) 
 

Heat transfer through solid 
 

Heat transfer from hot surface to 

surrounding fluid 

Heat transfer in boiling liquid 

Heat transfer from one body to 

  
or T = 600K 
 
 

 

ĺ Fourier’s law of heat 
conduction 

 
ĺ Newton’s law of cooling 

 

ĺ Convection heat transfer 
 

ĺ Radiation heat 

 



 

 

another  transfer separated  in 
 

space  
  

IES-21. Ans. (a) 
 

IES-22. Ans. (b)  

IES-23. Ans. (b) 
 

IES-24. Ans. (d) Total emissive power is defined as the total amount of radiation emitted 

by a body per unit time 

i.e. E = ∫ E Ȝ Ȝ dȜ = 0 ×3 + 150 × (12 − 3) + 300 × (25 − 12) + 0[α ] 
 

= 150 × 9 + 300 × 13 = 1350 + 3900 = 5250 W/m2 
 

IES-25. Ans. (c)   
 

IES-26. Ans. (c)   
 

IES-27. Ans. (b) As per Wien's law, Ȝ1T1 = Ȝ2T2  or 5800 × 0.5 = Ȝ2 × 573 
 

IES-28. Ans. (c)   
 

IES-29. Ans. (c) We know that, I = 
E  

 

π 
 

  
  

IES-30. Ans. (c) 
 

IES-31. Ans. (c) All the emission from one plate will cross another plate. So Shape Factor 

in one. 
 

IES-32. Ans. (b) A1F1 – 2 = A2 F2 – 1                               
 

or F2 – 1 =  A1 .F  = 6  × 0.1 = 0.15                         
 

                            
 

    1 −2 
4 

                                
 

   A2                                  
 

IES-33. Ans. (c)             
F

2 −1 

+
 

F
2 − 2 = 1, 䍉 F2 − 2 = 0  or F2 −1 = 1 

 

               A
1 
F

−2 

=
 
AF

2 −1           
 

               
or F 

   A 
× F 

 π r2 ×1  1  
 

              
 =   2 =      =   

 

                

A 
 

2π r2 2 
 

 

                     1 − 2     2 −1     
 

                           1      

1 
     

 

               F   + F   = 1 or F  =  = 0.5   

                       

                1 −1    1 − 2     1 −1 2      
 

   

= 0; ∴ F21 = 1 

                            
 

IES-34. Ans. (b) F22                               
 

A F = A F 
 

or F  = 
A  π r2   1                   

 

 2  =      =                     
 

  

A 2π r2 2                    

1  12 2  21     12                       
 

          1                             
 

IES-35. Ans. (d) F11 + F12 = 1;     䍉  
F

11 = 0                   
 

0 + F12  = 1    ⇒ F12  = 1                            
 

               

4π 

D 2                 
 

           

A 
 

  

   

 

 

π 
           

 

             2              
 

A F = A F  ⇒ F =  1  =      =                
 

 

A  

6D2    

6             
 

1  12 2  21  21                    
 

          2                             
  

IES-36. Ans. (c) 



 

 

 
 
 
 
 
 

IES-37. Ans. (b)                     Shape factor F12 means part of radiation 
 

                       body 1 radiating and body 2 absorbing 
 

                       F
11 

+
 
F

12 = 1         
 

                       or 0 + F12 = 1    
 

                       then A1 F12 = A2 F21  or A2 F21 
 

                       or F  =  A1 × F  =  0.6 × 1 = 0.004  

                         

A   

                          21     12   6L2 
 

                              2         
 

                       

or L = 

    0.6  

= 5m 

 

                          6 × 0.004  
 

IES-38. Ans. (d) Shape factor F22 = 1 − 
A1  

= 1 − 
2rl  

= 0.36 
        

 

A  π rl         
 

                                
 

             2                       
 

IES-39. Ans. (c) F11 + F12 = 1 as F11 = 0 or F12 = 1                
 

A F  = A F   or F  = 
A

1 
F

12 =  1    or F  = 2     
 

            
 

1 12 2 21 21     A2 
 

3 
         22 3 

     
 

                          
 

IES-40. Ans. (b)                                      
 

IES-41. Ans. (d)                                      
 

IES-42. Ans. (b) F2 − 2 = 0, 
䍈

 
F

2 −1 = 1                               
 

A F = A F or F 
    A         π d 2 / 4      d         

 

=  2 =              =             
 

   

π d2 
    

d + 4h 
    

1  1 − 2  2  2 −1 12     A             
 

        1         4  + π Dh               
 

                                       

IES-43. Ans. (b) F14 = 1 − 0.1 − 0.4 − 0.25 = 0.25               
 

A F = A F or F  = 
A

1 
F

14  = 4 × 0.25 = 0.5           
 

            
 

1 14 4 41 41    
A4 

 
2 

                    
 

                             
  

IES-44. Ans. (d)  
IES-45. Ans. (c)  

IES-46. Ans. (b) 
 

IES-47. Ans. (c) When body 1 is completely enclosed by body 2, body 1 is large.  

䍈  䌜 is given by 
 1     

. 
 

1
䌜1 

+
 

A  1 

−1 

 
 

 A1  䌜  
 

  2  2   
  

䌜 = 䌜1  

䍈 q1 −2  = A1 䌜1 ı = ( T1
4 − T2

4 ) 
 

IES-48. Ans. (b) 
 

IES-49. Ans. (d)  

IES-50. Ans. (b) Interchange factor (f12)   

= 
   1  

= 
1  

= 0.8182 
     

 

1 
+ 

 1 − 1 
2  − 1 400 k İ 

  

300 k 
 

 

 

   

 İ 
 

  

İ
1 

  

0.9 

  
 

    
İ

2          
  

IES-51. Ans. (b) Heat transfer Q =ı Fe FA (T1
4
 − T2

4
 )W / m

2
 ; ǔ = 5.67 × 10- 8 W/m2 K4 



 

 

Fe = effective emissivity coefficient = 
   1   

= 
   1  

= 
12  

 

 

1 
 

 1 
   

1 
 

 1 
 

 23 
 

 

  

+ 

 

− 1 + −1 

 
 

  İ 1  İ2  0.8 0.6    
 

Shape factor FA = 1 
 

Q = 5.67 × 10
−8 × 1 × 

12
23 ( 8004 − 5004 ) = 1026 W/m2 = 10.26 kW/m2 

 
IES-52. Ans. (d)  

IES-53. Ans. (c) J = İ Eb + (1 − İ )G 
 

12 = İ × 10 + (1 − İ ) × 20 or İ = 0.8 
 

IES-54. Ans. (b) 
 

IES-55. Ans. (c) 
 

IES-56. Ans. (a) The resistance due to steam film and pipe material are negligible in 

comparison to resistance of insulation material and resistance due to air film. 
 

IES-57. Ans. (a) All resistances are in series. IES-58. 

Ans. (b) 1. In conduction, heat resistance = x/kA 
 

Thus reduction in thickness and increase in area result in reduction of thermal 

resistance. 
 

2. Stirring of fluid and cleaning the heating surface increases value of h, and 

thus reduces thermal resistance. 

3. In radiation, heat flow increases with increase in temperature and reduces 

with reduction in emissivity. Thus thermal resistance does not decrease. 

Thus 1 and 2 are correct. 

IES-59. Ans. (c) 

Q
withinshield 

= 
1 

or 0.25 = 
1 

or n = 3  

Q n + 1 n + 1  

    
 

 without shield      
 

IES-60. Ans. (c) 



 

 

 
  
 

UNIT-5 

Mass Transfer 
  
“Mass transfer specifically refers to the relative motion of species in a mixture due to 

concentration gradients.” 
 

Analogy between Heat and Mass Transfer 
 
Since the principles of mass transfer are very similar to those of heat transfer, the analogy 

between heat and mass transfer will be used throughout this module. 
 

Mass transfer through Diffusion 
 

Conduction 

q" = −k dT J 
 

dy m 2 s  
(Fourier’s law) 

  

Mass Diffusion 
 

j " = −ρ D dȟA  kg   

  
 

A AB 
dy 

 2   
 

  m s 
 

(Fick’s law) 
  

ρ Is the density of the gas mixture and DAB is the diffusion coefficient 
 

ξ A = ρ A / ρ Is the mass concentration of component A.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The sum of all diffusion fluxes must be zero: ∑ ji" = 0  

ξ A + ȟB = 1  

dy
d

 

ȟ
A 

= −
 dy

d
 

ȟ
B 

  

DBA = DAB = D 

 

Heat and Mass Diffusion: Analogy 
 

• Consider unsteady diffusive transfer through a layer 



 

 

  
Heat conduction, unsteady, semi-infinite plate  

ρ c ∂ T = ∂  k ∂T ∂ t   
∂ x   ∂x  

∂ T 
= 

k ∂ 2T 
= α 

∂2T 
 

      

∂t ρc ∂ x2 ∂x2 

 

  
 

 
 
 
 
 

 

Similarity transformation: PDE → ODE  

          d2T 
+ 2Ș 

dș * 
 = 0 ,   Ș = 

x 
 

          

dy2 dȘ 4αt 
 

                
 

    T − T      x      
 

Solution:    0  = 1 − erf    
 

   
 

Tu − T 

      
 

        4αt    
 

Temperature field                 
 

Heat flux q" 

 

= k 
dT 

 

   

k ( Tu − T0 ) = 
kcρ ( Tu − T ) 

 

= 

  
 

   
 

 dx   παt  
 

  

x=0 
x = 0        π t   

                  
  

 
 
 
 
 
 
 
 
 

Diffusion of a gas component, which is brought in contact with another gas layer at time 

t=0 differential equation: 
 

∂ ρi 
= ρ D 

∂2ȟi 
 

∂ t ∂x2 
 

  
 

∂ ȟ i  
= D 

∂2ȟi  
 

∂ t ∂x2 
 

 
  

Initial and boundary conditions:  

ξ i (t = 0, x) = ȟi . o  
ξ i (t > 0, x = 0) = ȟi .u  
ξ i (t > 0, x = ∞ ) = ȟi . o 

 
 
 

 

 ȟ 
i 

− ȟ 
i . o 

 x  Concentration field 
 

Solution:   = 1 − erf   
 

 

ȟ
 u 

−
 

ȟ
i . o 

  
 

  4Dt  
  



 

 

 
 
  
 
 
 
 
 
 
 
 
 
 
 

 

Diffusive mass flux ji
"
 

 

x=0 

=
 

ρ D 
( ȟi . Ph − ȟi . o ) 

 

 
 

 π Dt 
 

    
  

 

Diffusive Mass Transfer on a Surface (Mass convection) 
 

Fick's Law, diffusive mass flow rate:  

j " = − ρ D ∂ ȟ 
 

  

= −ρ D ȟ ∞ − ȟ w 
 

∂ȟ ∗ 
  

  

   
 

∂ y 
    

L 
  

∂y∗
 

  
 

A   
y=0 

     ∗ 
=0 

 

             y 
 

Mass transfer coefficient h kg 

mass m 2s   

jA" = hmass (ȟw − ȟ∞ ) 
 

Dimensionless mass transfer number, the Sherwood number Sh 
 

h L 
Sh= 

∂ȟ 
∞

 
 

= f (Re,Sc) 

 

 
 

mass     
 

ρ D ∂y∗
 

 
 

 • 
=0  

     y 
 

Sh = C Rem Scn 
 

Note: Compare with energy equation And Nusselt Number: The constants C and the 

exponents’ m and n of both relationships must be equal for comparable boundary 

conditions.  
Dimensionless number to represent the relative magnitudes of heat and mass diffusion in 

the thermal and concentration boundary layers 
 

Lewis Number: Le= 
Sc 

= 
α 

= 
Thermal diffusivity 

 

Pr D Mass diffusivity 
 

    
  

Analogy between heat and mass transfer 
 
Comparing the correlation for the heat and mass transfer 

Sh  Sc n 
 

 = 
 

 

 

Nu 
 

 

 Pr 
  

Hence, 
h  Sc n

−1 
 

mass =   
 

h / cp 

 
 

  Pr 
  

For gases, Pr ≈ Sc, hence: 
hmass 

=
 
1

 

h / cp  

  

Lewis relation 

 
 

NUMBERS (Mechanical Engineering) 



 

 

 
 

1. Boiling Number, ( B 0 ) = h  T ; G = mass velocity = ρv  

  

 G hfg       
 

      1 
 

   

 

 

 

 

 

 

   2 3 
 

2. Condensation Number, ( C 0 ) = h0  
 ȝf   

  
 

   K 
3
f ρ f ( ρ f − ρg )g 

 

      
 

 

3. Nusselt Number ( Nu ) =  hL  =         convective heat transfer rate   
 

                

T 
 

 

      K        

heat conducted under temperature gradient 

 
 

               L  
 

4. Reynolds Number ( Re ) = ρVD   =  Inertia force    
 

   

viscous force 

   

      ȝ          
 

5. Prandlt Number ( Pr ) = 
CPȝ  

= 
  Kinematic viscosity( υ)    

 

  

K 
  

Thermal diffusivity ( α) 
  

 

            
 

6. Grashof Number ( G ) =   ρ 2 β g TL3
  = Inertia force × Boyancy force    

 

                   

( viscous force)2
 

   

r       ȝ2             
 

7. Lewis Number ( Le ) = 
  fg            k   α 1−C   

 

         =       =   

 

  
 

 

C K 
    

ρC D 
   

 

   
ω 
      D   

 

    p          p          
 

α 2/3
   

For forced convection of air. 
  

 =    
 

    
 

        

D                       
 

= 
α 0.48

  
 For natural convection of air. 

D  
 
 
 

 

8. Schmidt Number (Sc ) = ρ
ȝ

D = 
Dynamic viscosity

 
 
 

 

9. Stanton Number ( St ) = 
    h     

= 
 Nu  

=  
friction factor 

= 
Wall heat transfer rate  

 

ρVC 
P 

R P 2 Mass heat flow rate  

       
 

          e r         
 

10. Sherwood Number ( Sh) =   K w L = hmx  [ hm  = mass transfer co-efficient]  

  

ρD 
 

 

          D       
 

 Lυ   mass heat flow rate (ρvC ) 
 

11. Peclet Number ( Pe ) = 
    

= 
             p     

 

α 
  

Heat flow rate by conduction  

    
 

         under a unit temp. gradiet     
 

         and through a thickness L. 
 

Pe  = Re × Pr               
 

            heat capacityof the fluid flowing through the pipe 
 

12. Graetz Number ( Gr ) = 
 mcp  

= 
 per unit length of the pipe  

 

  L
K 

        

Conductivity of the pipe 
 

                
 

= 
    πd            

 

 P
e 
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13. Cetane Number = the cetane number of a fuel is the percentage by volume of 

cetane in a mixture of cetane and α - methylnaphthalene (C10H7 CH3 ) that 

has the same performance in the standard test engine as that of the fuel. 

Cetane Number = 
104

 
−

 
Octane Number

 

2.75 

 

14. Octane Number: The octane number of a fuel is the percentage by volume 

iso-octane in a mixture of iso-octane and n-heptanes that has the same 

detonation under the same conditions as the fuel under test. 

Octane Number = 100 + 
PN−100

 for using additives.  
3 

 

15. Performance Number (PN):  

= Knock limited indicated mean effective pressure of the test fuel   
Knock limited indicated mean effective pressure of the iso − octane 

= KLIMEP of test fule  
KLIMEP of iso − octane 

 
16. Research octane Number (RON) ⇒ when test under mild operating 

condition i.e. low engine speed and low mixture temperature. 
 
17. Motor Octane Number (MON) ⇒ when test carried out under more severe 

operating conditions (High engine speed and higher mixture temperature)  
→ ROM > MON  

18. Froude Number ( Fe ) =   V   =    Fi  ; Fg = gravity force (ρ ALg)     
 

  

Lg 

            
 

               Fg           
 

19. Euler Number ( Eu ) =    V    =     Fi ; Fp = pressure force = PA     
 

  

P / ρ 

            
 

                
F

p           
 

20. Weber Number ( We ) = 
  V     

=  
Fi  

; Fs  = surface tension force = ıL 
 

 

  ı / ρL F  
 

                       
 

                     s           
 

21.  Mach Number (M) =    V   =     
F

i  ; F = Elastic force = KL
2
     

 

                 
 

        K / ρ 
        

Fe 
 e         

 

                          
 

22. Bearing characteristic Number = 
ȝN     

 

P  

    
 

                

r  
2
 

    
 

23. Summer feld Number = 

ȝN          
 

   s  

 

 

 

          
 

 p    c           
 

                           į   
 

  

hį 

    Internal ressistance of the fin material  

  

 
 

        
 

24. Biot Number ( Bi ) = = 
                       K   

 

K 
External resistance of the fluid on fin surface 

1   

   
 

   

  

 

  
 

    
 

                              h  
  

It is dimensionless and is similar to Nusselt number. However, there is an 

important difference, the thermal conductivity in Biot number refers to the 

conduction body where in Nusselt Number, and it is the conductivity of 

convecting fluid. 



 

 

 
 

25. Fourier Number = į
α

2

t
 

 
 

26. Lorenz Number = 
K  

 

K T 
 

 e ω 
  

K = Thermal conductivity K 

e = electrical conductivity Tω 

= wire wall temperature. 

 

  Number Application 

 1. Grashof Number Natural convection of ideal fluid. 
 2. Stanton Number Forced convection. 

 3. Peclet Number Forced convection for small prandtl 

 4. Schmidt Number, Sherwood number. 

 5. Biot Number and Fourier Number Mass transfer. 

   Transient conduction. 
    

 



 

 

 
IES-1. Consider the following statements: [IES-2010] 
 

1. Mass transfer refers to mass in transit due to a species 

concentration gradient in a mixture. 
 

2. Must have a mixture of two or more species for mass transfer to 

occur. 
 

3. The species concentration gradient is the driving potential for mass 

transfer. 

4. Mass transfer by diffusion is analogous to heat transfer by 

conduction. 
 

Which of the above statements are correct ? 
 

 (a) 1, 2 and 3 only (b) 1, 2 and 4 only 

 (c) 2, 3 and 4 only (d) 1, 2, 3 and 4 

IES-2. If heat and mass transfer take place simultaneously, the ratio of heat 

 transfer coefficient to the mass transfer coefficient is a function of the 

 ratio of: [IES-2000] 

 (a) Schmidt and Reynolds numbers (b) Schmidt and Prandtl numbers 

 (c) Nusselt and Lewis numbers (d) Reynolds and Lewis numbers 

IES-3. In case of liquids, what is the binary diffusion coefficient proportional 

 to?  [IES-2006] 

 (a) Pressure only (b) Temperature only 

 (c) Volume only (d) All the above 

IES-4. In a mass transfer process of diffusion of hot smoke in cold air in a 

 power plant, the temperature profile and the concentration profile will 

 become identical when: [IES-2005] 

 (a) Prandtl No. = 1 (b) Nusselt No. = 1 

 (c) Lewis No. = 1 (d) Schmilt No. = 1 
 



 

 

IES-5.   Given that: [IES-1997] 
 

Nu = Nusselt number Re = Reynolds number 
 

Pr = Prandtl number Sh = Sherwood number 
 

Sc = Schmidt number Gr = Grashoff number 
  

The functional relationship for free convective mass transfer is given 

as: 
 

(a ) N u = f (Gr , Pr ) (b ) S h = f ( S c ,Gr ) (c ) N u = f ( Rr , Pr ) 

(d ) S h = f ( Re , Sc ) 
 

 

IES-6.   Schmidt number is ratio of which of the following? [IES-2008] 
 

(a) Product of mass transfer coefficient and diameter to diffusivity of fluid 
 

(b) Kinematic viscosity to thermal diffusivity of fluid 
 

(c) Kinematic viscosity to diffusion coefficient of fluid 
 

(d) Thermal diffusivity to diffusion coefficient of fluid 



 

 

 
 

IES-1. Ans. (d) 
 

IES-2. Ans. (b) Nux  = ( conct.)1 × ( Re) 0.8 × ( Pr)1
3  

 

Shx  = ( conct. ) 2 × ( Re) 0.8 × ( Se)1
3  

∴ 
h

x  = ( conct.)  
Pr
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hxm3   Se  
 

 

IES-3. Ans. (b) 
 

IES-4. Ans. (c) 
 

IES-5. Ans. (b) 
 

IES-6. Ans. (c) Schmidt number 
 

Sc = 
ȝ 

= 
υ 

= 
Momentum diffusivity 

 

ρD D Mass diffusivity 
 

   
 

 
 
 
 


